A Passivity-Based Control Integrated with Virtual DC Motor Strategy for Boost Converters Feeding Constant Power Loads
Abstract
1. Introduction
2. System Configuration and Modeling
3. Design of Virtual DC Motor Compensated Passivity-Based Control
3.1. Design of Passivity-Based Control
- Energy shaping stage:
- II.
- Damping injection stage:
3.2. Stability Analysis of PBC
3.3. Virtual DC Machine Control Strategy
4. Results
4.1. Simulation Results
4.1.1. Constant Power Load Variations Test
4.1.2. Reference Voltage Variation Test
4.1.3. Input Voltage Variation Test
4.1.4. Phase Plot
4.2. Experimental Results
4.2.1. Experimental Test of CPL Variations
4.2.2. Experimental Test of Reference Voltage Variation
4.2.3. Experimental Test of Input Voltage Variation
5. Conclusions
- (1)
- Verifying the applicability of the proposed control method in other types of DC/DC converters, such as topological structures like buck converters and bidirectional buck/boost converters;
- (2)
- DC microgrids incorporating DC devices such as photovoltaics, energy storage systems, and electric vehicle charging piles are typical multi-converter systems. Therefore, it is necessary to further explore the adaptability and scalability of the proposed method in such multi-converter systems, encompassing aspects such as coordinated control of multiple converters and their interactive influences.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
, | Input, capacitor (output) voltage of the converter |
Inductance of the converter | |
Capacitor of the converter | |
Inductance current of the converter | |
Power of CPL | |
Duty cycle of the converter | |
, , | Reference inductance current of PBC, VDCM, reference current on output side of the converter |
, | Reference input, capacitor (output) voltage |
, | PBC gains |
Moment of inertia in VDCM | |
Damping coefficient in VDCM | |
, | Mechanical and electromagnetic torque in VDCM |
, | Angular velocity and rated angular velocity in VDCM |
Armature induced electromotive force in VDCM | |
Armature equivalent resistance in VDCM | |
Armature current in VDCM | |
Output voltage of the DC machine in VDCM | |
Torque coefficient in VDCM | |
Flux per pole in VDCM | |
, , | Reference average power of loads; mechanical power; and electromagnetic power in VDCM |
References
- Xia, Q.; Chen, J.; Yue, J.; Lyu, F.; Cui, Z. Health condition determination of DC/DC converters based on abductive learning. Measurement 2025, 248, 116910. [Google Scholar] [CrossRef]
- Cheng, H.; Jung, S.; Kim, Y.-B. A novel reinforcement learning controller for the DC-DC boost converter. Energy 2025, 321, 135479. [Google Scholar] [CrossRef]
- Rahimian, M.M.; Mohammadi, H.R.; Guerrero, J.M. Constant power load issue in DC/DC multi-converter systems: Past studies and recent trends. Electr. Power Syst. Res. 2024, 235, 110851. [Google Scholar] [CrossRef]
- Singh, S.; Gautam, A.R.; Fulwani, D. Constant power loads and their effects in DC distributed power systems: A review. Renew. Sustain. Energy Rev. 2017, 72, 407–421. [Google Scholar] [CrossRef]
- Cespedes, M.; Xing, L.; Sun, J. Constant-Power Load System Stabilization by Passive Damping. IEEE Trans. Power Electron. 2011, 26, 1832–1836. [Google Scholar] [CrossRef]
- Wu, M.; Lu, D.D.-C. A Novel Stabilization Method of LC Input Filter with Constant Power Loads Without Load Performance Compromise in DC Microgrids. IEEE Trans. Ind. Electron. 2015, 62, 4552–4562. [Google Scholar] [CrossRef]
- Rahimi, A.M.; Emadi, A. Active Damping in DC/DC Power Electronic Converters: A Novel Method to Overcome the Problems of Constant Power Loads. IEEE Trans. Ind. Electron. 2009, 56, 1428–1439. [Google Scholar] [CrossRef]
- Zhang, X.; Ruan, X.; Zhong, Q.-C. Improving the Stability of Cascaded DC/DC Converter Systems via Shaping the Input Impedance of the Load Converter with a Parallel or Series Virtual Impedance. IEEE Trans. Ind. Electron. 2015, 62, 7499–7512. [Google Scholar] [CrossRef]
- Kowsari, E.; Zarei, J.; Razavi-Far, R.; Saif, M.; Dragicevic, T.; Khooban, M.-H. A Novel Stochastic Predictive Stabilizer for DC Microgrids Feeding CPLs. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1222–1232. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, W.; Chu, Z.; Zhang, H.; Wang, Z. An optimized synchronous approach to DC/DC droop backstepping control considering voltage compensation in DC microgrids. Electr. Power Syst. Res. 2024, 228, 110014. [Google Scholar] [CrossRef]
- Martinez-Trevino, B.A.; El Aroudi, A.; Vidal-Idiarte, E.; Cid-Pastor, A.; Martinez-Salamero, L. Sliding-mode control of a boost converter under constant power loading conditions. IET Power Electron. 2019, 12, 521–529. [Google Scholar] [CrossRef]
- Xu, Q.; Vafamand, N.; Chen, L.; Dragicevic, T.; Xie, L.; Blaabjerg, F. Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1205–1221. [Google Scholar] [CrossRef]
- Huang, S.; Guo, T.; Wang, X.; Li, S.; Li, Q. An Output Voltage Tracking Control Method with Overcurrent Protection Property for Disturbed DC-DC Boost Converters. IEEE Trans. Circuits Syst. I-Regul. Pap. 2024, 71, 1889–1900. [Google Scholar] [CrossRef]
- He, W.; Ortega, R. Design and Implementation of Adaptive Energy Shaping Control for DC-DC Converters with Constant Power Loads. IEEE Trans. Ind. Inform. 2020, 16, 5053–5064. [Google Scholar] [CrossRef]
- Wang, M.; Tang, F.; Wu, X.; Zhang, Y.; Wang, J. Passivation and Passivity-Based Control of DC-DC Converter with Unknown Constant Power Loads. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 4041–4058. [Google Scholar] [CrossRef]
- Hassan, M.A.; Su, C.L.; Pou, J.; Sulligoi, G.; Almakhles, D.; Bosich, D.; Guerrero, J.M. DC Shipboard Microgrids with Constant Power Loads: A Review of Advanced Nonlinear Control Strategies and Stabilization Techniques. In Proceedings of the IEEE-Power-and-Energy-Society General Meeting (PESGM), Orlando, FL, USA, 16–20 July 2023. [Google Scholar]
- Hassan, M.; Su, C.-L.; Chen, F.-Z.; Lo, K.-Y. Adaptive Passivity-Based Control of a DC-DC Boost Power Converter Supplying Constant Power and Constant Voltage Loads. IEEE Trans. Ind. Electron. 2022, 69, 6204–6214. [Google Scholar] [CrossRef]
- Hassan, M.A.; Sadiq, M.; Hoang, L.Q.N.; Su, C.-L. Adaptive Passivity-Based Control for Bidirectional DC-DC Power Converter Supplying Constant Power Loads in DC Shipboard Microgrids. In Proceedings of the IEEE International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, 16–19 November 2021. [Google Scholar]
- Abdolahi, M.; Adabi, J.; Mousavi, S.Y.M. An Adaptive Extended Kalman Filter with Passivity-Based Control for DC-DC Converter in DC Microgrids Supplying Constant Power Loads. IEEE Trans. Ind. Electron. 2024, 71, 4873–4882. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Z.; Qiao, W. An Interconnection and Damping Assignment Passivity-Based Controller for a DC-DC Boost Converter with a Constant Power Load. IEEE Trans. Ind. Appl. 2014, 50, 2314–2322. [Google Scholar] [CrossRef]
- Badji, A.; Obeid, H.; Hilairet, M.; Laghrouche, S.; Abdeslam, D.O.; Djerdir, A. Enhanced energy management of fuel cell electric vehicles using integral sliding mode control and passivity-based control. Appl. Energy 2025, 377, 124653. [Google Scholar] [CrossRef]
- Hassan, M.A.; Li, E.-P.; Li, X.; Li, T.; Duan, C.; Chi, S. Adaptive Passivity-Based Control of dc-dc Buck Power Converter with Constant Power Load in DC Microgrid Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2029–2040. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, L.; Song, X.; Kang, W.; Kang, Z. A Transient Control Strategy for Grid-Forming Photovoltaic Systems Based on Dynamic Virtual Impedance and RBF Neural Networks. Electronics 2025, 14, 785. [Google Scholar] [CrossRef]
- Tan, S.; Dong, G.; Zhang, H.; Zhi, N.; Xiao, X. Virtual DC Machine Control Strategy of Energy Storage Converter in DC Microgrid. In Proceedings of the IEEE Electrical Power and Energy Conference (EPEC), Ottawa, ON, Canada, 12–14 October 2016. [Google Scholar]
- Lin, G.; Ma, J.; Li, Y.; Rehtanz, C.; Liu, J.; Wang, Z.; Wang, P.; She, F. A Virtual Inertia and Damping Control to Suppress Voltage Oscillation in Islanded DC Microgrid. IEEE Trans. Energy Convers. 2021, 36, 1711–1721. [Google Scholar] [CrossRef]
- Emadi, A.; Khaligh, A.; Rivetta, C.H.; Williamson, G.A. Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans. Veh. Technol. 2006, 55, 1112–1125. [Google Scholar] [CrossRef]
- Kwasinski, A.; Krein, P.T. Stabilization of constant power loads in dc-dc converters using passivity-based control. In Proceedings of the 29th International Telecommunications Energy Conference, Rome, Italy, 30 September–5 October 2007; pp. 867–874. [Google Scholar]
- Sira-Ramirez, H.; Ortega, R.; Garcia-Esteban, M. Adaptive passivity-based control of average dc-to-dc power converter models. Int. J. Adapt. Control Signal Process. 1998, 12, 63–80. [Google Scholar] [CrossRef]
Boost Converter Parameters | Value |
---|---|
Input voltage / | 12 |
Input filter inductor / | 2 |
Capacitance | 1000 |
Switching frequency | 10 |
Control Parameters of Boost Converter | |
PBC gains | |
PBC gains | |
Moment of inertia | |
Damping coefficient | |
Rated angular velocity | |
Torque coefficient | |
Flux per pole | |
Armature equivalent resistance | |
Voltage loop proportional gain | 0.6 |
Voltage loop integral gain | 20 |
Current loop proportional gain | 1 |
Current loop integral gain | 25 |
CPL Parameters | |
Load voltage | |
Load power | |
Filter inductor | |
Output capacitance | |
Control Parameters of CPL | |
proportional gain | 3 |
Integral gain | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, M.; Gong, P.; Guo, H.; Li, G. A Passivity-Based Control Integrated with Virtual DC Motor Strategy for Boost Converters Feeding Constant Power Loads. Electronics 2025, 14, 2909. https://doi.org/10.3390/electronics14142909
Ou M, Gong P, Guo H, Li G. A Passivity-Based Control Integrated with Virtual DC Motor Strategy for Boost Converters Feeding Constant Power Loads. Electronics. 2025; 14(14):2909. https://doi.org/10.3390/electronics14142909
Chicago/Turabian StyleOu, Mingyang, Pingping Gong, Huajie Guo, and Gaoxiang Li. 2025. "A Passivity-Based Control Integrated with Virtual DC Motor Strategy for Boost Converters Feeding Constant Power Loads" Electronics 14, no. 14: 2909. https://doi.org/10.3390/electronics14142909
APA StyleOu, M., Gong, P., Guo, H., & Li, G. (2025). A Passivity-Based Control Integrated with Virtual DC Motor Strategy for Boost Converters Feeding Constant Power Loads. Electronics, 14(14), 2909. https://doi.org/10.3390/electronics14142909