Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread
Abstract
1. Introduction
1.1. Prior Works
1.2. Contributions
- Joint optimization of the digital precoding, analog precoding, and delay matrix. We propose a fast Riemannian conjugate gradient optimization-based alternating minimization (FRCG-AltMin) algorithm, aiming to maximize the spectral efficiency. In particular, we employ a direct Riemannian manifold optimization framework for the analog precoder design, eliminating approximation errors and significantly improving spectral efficiency in angular spread scenarios.
- Introduction of a new DPP architecture to mitigate the beam split effect through frequency-dependent delay compensation. Energy efficiency analysis demonstrates that, with minimal TTD element additions, the architecture achieves significantly enhanced energy efficiency compared to conventional hybrid precoding schemes owing to substantial improvements in spectral efficiency.
- Simulation results demonstrate that the proposed method approaches the theoretical upper bound of spectral efficiency under a clustered-channel model with angular spread while outperforming existing baseline algorithms with angular spread. Moreover, the proposed scheme achieves higher spectral efficiency than the existing baseline algorithms.
1.3. Organization
1.4. Notations
2. System Model and Framework
2.1. System Architecture and Hybrid Precoding Framework
2.2. THz Channel Modeling
2.3. Problem Formulation
3. Methodology
3.1. Alternating Optimization Framework
Algorithm 1 Joint Alternating Optimization Framework |
Input Channel matrix , optimal digital precoder
|
Algorithm 2 Riemannian Conjugate Gradient Optimization for Analog Precoder |
Input: , , , Output:
|
3.2. Digital Precoder Design
3.3. Delay Matrix Design
3.4. Analog Precoder Design
4. Computational Complexity
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, J.; Dai, L. Delay-phase precoding for THz massive MIMO with beam split. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Zhi, L.; Hehao, N.; Yuanzhi, H.; Kang, A.; Xudong, Z.; Zheng, C.; Pei, X. Self-powered absorptive reconfigurable intelligent surfaces for securing satellite-terrestrial integrated networks. China Commun. 2024, 21, 276–291. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Cacciapuoti, A.S.; Sankhe, K.; Caleffi, M.; Chowdhury, K.R. Beyond 5G: THz-based medium access protocol for mobile heterogeneous networks. IEEE Commun. Mag. 2018, 56, 110–115. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Zhang, B.; Zhang, Y.; Niu, Z.; Kuang, N.; Chen, W.; Li, L.; Li, S. A survey on terahertz communications. China Commun. 2019, 16, 1–35. [Google Scholar] [CrossRef]
- Li, D.; Qiao, D.; Zhang, L. Achievable rate of indoor THz communication systems with finite-bit ADCs. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–6. [Google Scholar]
- Akyildiz, I.F.; Jornet, J.M.; Han, C. Terahertz band: Next frontier for wireless communications. Phys. Commun. 2014, 12, 16–32. [Google Scholar] [CrossRef]
- Ma, Y.; Long, W.; Miao, C.; Chen, Q.; Zhang, J.; Yu, Y.; Wu, W. Enhanced dual lane detection in automotive radar systems using harmonic coordinated beamforming of time-modulated arrays. Wirel. Netw. 2025, 31, 1801–1812. [Google Scholar] [CrossRef]
- Song, H.J.; Nagatsuma, T. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256–263. [Google Scholar] [CrossRef]
- Mumtaz, S.; Rodriguez, J.; Dai, L. MmWave Massive MIMO: A Paradigm for 5G; Academic Press: Orlando, FL, USA, 2016. [Google Scholar]
- Peng, B.; Guan, K.; Kürner, T. Cooperative dynamic angle of arrival estimation considering space–time correlations for terahertz communications. IEEE Trans. Wirel. Commun. 2018, 17, 6029–6041. [Google Scholar] [CrossRef]
- You, L.; Gao, X.; Li, G.Y.; Xia, X.G.; Ma, N. BDMA for millimeter-wave/terahertz massive MIMO transmission with per-beam synchronization. IEEE J. Sel. Areas Commun. 2017, 35, 1550–1563. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Zhang, Y.; Xie, T.; Dai, X.; Wang, Z. Fast channel tracking for terahertz beamspace massive MIMO systems. IEEE Trans. Veh. Technol. 2016, 66, 5689–5696. [Google Scholar] [CrossRef]
- Zhang, J.A.; Huang, X.; Dyadyuk, V.; Guo, Y.J. Massive hybrid antenna array for millimeter-wave cellular communications. IEEE Wirel. Commun. 2015, 22, 79–87. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Sayeed, A.M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun. Mag. 2018, 56, 211–217. [Google Scholar] [CrossRef]
- El Ayach, O.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef]
- Park, S.; Alkhateeb, A.; Heath, R.W. Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems. IEEE Trans. Wirel. Commun. 2017, 16, 2907–2920. [Google Scholar] [CrossRef]
- Yu, X.; Shen, J.C.; Zhang, J.; Letaief, K.B. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 485–500. [Google Scholar] [CrossRef]
- Lin, T.; Cong, J.; Zhu, Y.; Zhang, J.; Letaief, K.B. Hybrid beamforming for millimeter wave systems using the MMSE criterion. IEEE Trans. Commun. 2019, 67, 3693–3708. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Zhou, S.; Sayeed, A.M.; Hanzo, L. Wideband beamspace channel estimation for millimeter-wave MIMO systems relying on lens antenna arrays. IEEE Trans. Signal Process. 2019, 67, 4809–4824. [Google Scholar] [CrossRef]
- Zhang, E.; Huang, C. On achieving optimal rate of digital precoder by RF-baseband codesign for MIMO systems. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, BC, Canada, 14–17 September 2014; pp. 1–5. [Google Scholar]
- Headland, D.; Monnai, Y.; Abbott, D.; Fumeaux, C.; Withayachumnankul, W. Tutorial: Terahertz beamforming, from concepts to realizations. APL Photonics 2018, 3, 051101. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, D. Space-time block coding-based beamforming for beam squint compensation. IEEE Wirel. Commun. Lett. 2018, 8, 241–244. [Google Scholar] [CrossRef]
- Pavia, J.P.; Velez, V.; Ferreira, R.; Souto, N.; Ribeiro, M.; Silva, J.; Dinis, R. Low complexity hybrid precoding designs for multiuser mmWave/THz ultra massive MIMO systems. Sensors 2021, 21, 6054. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Chu, T.S.; Roderick, J. Integrated true-time-delay-based ultra-wideband array processing. IEEE Commun. Mag. 2008, 46, 162–172. [Google Scholar] [CrossRef]
- Lin, C.; Li, G.Y.; Wang, L. Subarray-based coordinated beamforming training for mmWave and sub-THz communications. IEEE J. Sel. Areas Commun. 2017, 35, 2115–2126. [Google Scholar] [CrossRef]
- Dai, L.; Tan, J.; Chen, Z.; Poor, H.V. Delay-phase precoding for wideband THz massive MIMO. IEEE Trans. Wirel. Commun. 2022, 21, 7271–7286. [Google Scholar] [CrossRef]
- Cui, M.; Tan, J.; Dai, L. Wideband hybrid precoding for THz massive MIMO with angular spread. Sci Sin Inf. 2023, 53, 772–786. [Google Scholar]
- Cho, M.K.; Song, I.; Cressler, J.D. A true time delay-based SiGe bi-directional T/R chipset for large-scale wideband timed array antennas. In Proceedings of the 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, USA, 10–12 June 2018; pp. 272–275. [Google Scholar]
- Hu, F.; Mouthaan, K. A 1–20 GHz 400 ps true-time delay with small delay error in 0.13 μm CMOS for broadband phased array antennas. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–3. [Google Scholar]
- Ghazizadeh, M.H.; Medi, A. Novel trombone topology for wideband true-time-delay implementation. IEEE Trans. Microw. Theory Tech. 2019, 68, 1542–1552. [Google Scholar] [CrossRef]
- Lin, C.; Li, G.Y.L. Terahertz communications: An array-of-subarrays solution. IEEE Commun. Mag. 2016, 54, 124–131. [Google Scholar] [CrossRef]
- Xing, Y.; Rappaport, T.S. Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Priebe, S.; Jacob, M.; Kürner, T. Angular and RMS delay spread modeling in view of THz indoor communication systems. Radio Sci. 2014, 49, 242–251. [Google Scholar] [CrossRef]
- Kasai, H. Fast optimization algorithm on complex oblique manifold for hybrid precoding in millimeter wave MIMO systems. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–29 November 2018; pp. 1266–1270. [Google Scholar]
Symbol | Definition |
---|---|
Complex circle manifold | |
Optimization variable at iteration k (vectorized ) | |
Riemannian gradient on (31) | |
Retraction operation (30) | |
Vector transport along manifold | |
Auxiliary matrix (17) | |
Delay component (16) | |
Weighted coefficient (22) |
Algorithms | Main Computational Complexity | Iteration | Runtime (per Iter) |
---|---|---|---|
Proposed FRCG-AltMin | 10 | 2.88 | |
DPP-TTD | / | / | |
DPP-AltMin | 20 | 0.88 | |
MO-AltMin | 10 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, C.; Zhang, R.; Mei, Y. Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread. Electronics 2025, 14, 2830. https://doi.org/10.3390/electronics14142830
Wang Y, Chen C, Zhang R, Mei Y. Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread. Electronics. 2025; 14(14):2830. https://doi.org/10.3390/electronics14142830
Chicago/Turabian StyleWang, Ye, Chuxin Chen, Ran Zhang, and Yiqiao Mei. 2025. "Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread" Electronics 14, no. 14: 2830. https://doi.org/10.3390/electronics14142830
APA StyleWang, Y., Chen, C., Zhang, R., & Mei, Y. (2025). Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread. Electronics, 14(14), 2830. https://doi.org/10.3390/electronics14142830