A Gate Oxide Degradation and Junction Temperature Evaluation Method for SiC MOSFETs Based on an On-State Resistance Model
Abstract
1. Introduction
2. Analysis of Temperature Sensitivity and Gate Oxide Degradation Impacts on RON
2.1. General Analysis of RON
2.2. Effect of Gate Oxide Degradation on RON
2.2.1. Mechanism of Gate Oxide Degradation
2.2.2. Impact of Gate Oxide Degradation on VTH, µN, and RON
2.3. Effect of Temperature on RON
2.3.1. Effect of Temperature on VTH, µN, and RON
2.3.2. Effect of Temperature on RS
2.4. Derivation of the RON Model
2.4.1. Derivation of the Expression for μN
2.4.2. Derivation of the Expression for RON
3. Proposed Evaluation Strategy for Gate Degradation and Tj
3.1. Parameter Calculation of RON Model
- Step 1: DPT and Measurement Aggregation
- 2.
- Step 2~3: Parameter Classification and Initialization
- 3.
- Step 4: Model Accuracy Validation
3.2. Prediction Method for Junction Temperature and Gate Degradation
4. Experimental Methodology
4.1. Design of Gate Drive Circuit
4.2. Experimental Configuration for RON Model Extraction Based on DPT Measurement
4.3. Experimental Configuration for Validation of the Proposed Method in the DC-DC Converter
4.4. Experimental Configuration for Accelerated Testing of Gate Oxide Degradation
5. Experimental Verification
5.1. Experimental Results of VTH Extraction and Gate Oxide Degradation
5.2. Experimental Results of DPT Test
5.3. Experimental Results of RON Model Calculation
5.3.1. Without Gate Oxide Degradation Conditions
5.3.2. Under Gate Oxide Degradation Conditions
5.4. Prediction Results of Gate Oxide Degradation and Tj Based on DPT
5.4.1. The Explanation of the Calculation Process for Gate Degradation and Tj
5.4.2. Experimental Conditions and Results
5.5. Experimental Results Based on a DC-DC Converter
5.6. Impact of Voltage and Current on the Proposed Method
5.7. Gate Oxide Degradation and Tj Prediction Results Based on Planar SiC MOSFET
5.8. Comparison of Porposed Method with Conventional RON Mapping Methods Without Considering Gate Degradation
5.9. The Limitations of the Proposed Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Ad | Device active area |
COX | Gate oxide capacitance |
kB | Boltzmann constant |
LCH | Length of channel |
Ld | Equivalent length |
ni | Intrinsic carrier concentration |
NA | Doping concentration in the p-type well |
Nd | Doping concentration in the drift region |
ΔNit | Variation in interface trap densities |
Nit | Stress-induced changes in densities of Qit |
Not | Stress-induced changes in densities of Qot |
q | Electric charge |
Qit | Interface-trapped charge at the oxide–silicon interface |
Qot | Oxide-trapped charge within the gate oxide |
RA | Resistance of accumulation |
RCH | Resistance of channel zone |
RCS | Resistance of source contact |
RCD | Resistance of drain contact |
RD | Resistance of drift zone |
RJFET | Resistance of JFET zone |
RN+ | Resistance of the source region |
RON | Resistance of on-state |
RS | Residual resistance |
RSUB | Resistance of the N+ substrate |
T0 | Reference temperature |
Tj | Temperature of junction temperature |
VG | Gate-source voltage |
VTH | Threshold voltage |
ΔVTH_drift | Drift of VTH due to gate degradation |
WCELL | Width of channel zone |
α | Effective width for vertical current flow through the JFET region |
αit | Fitting coefficients in the model for describing the effects of Qit |
αot | Fitting coefficients in the model for describing the mobility reduction of interface-trapped charges induced by Qot |
ρJFET | Resistivity of the JFET region |
θ | Electric Field Reduction Parameter |
λ | Coefficient of short-channel effect |
µN | Electron mobility of the semiconductor interface of the oxide layer |
µN_d | Drift region mobility |
µN0 | Intrinsic electron mobility of the inversion layer |
µB | Semiconductor material’s electron mobility |
µPH | Surface phonon mobility |
µC | Coulombic scattering |
µSR | Surface roughness mobility |
εS | Dielectric constant |
χjp | Depth of the P+ shield region |
References
- Jiang, X.; Wang, J.; Yu, H.; Chen, J.; Zeng, Z.; Yang, X.; Shen, Z.J. Online junction temperature measurement for SiC MOSFET based on dynamic threshold voltage extraction. IEEE Trans. Power Electron. 2021, 36, 3757–3768. [Google Scholar] [CrossRef]
- Yang, S.; Bryant, A.; Mawby, P.; Xiang, D.; Ran, L.; Tavner, P. An Industry-Based Survey of Reliability in Power Electronic Converters. IEEE Trans. Ind. 2011, 47, 1441–1451. [Google Scholar] [CrossRef]
- Lelis, A.J.; Green, R.; Habersat, D.B.; El, M. Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs. IEEE Trans. Electron. Devices 2015, 62, 316–323. [Google Scholar] [CrossRef]
- Farhadi, M.; Vankayalapati, B.T.; Sajadi, R.; Akin, B. Gate-Oxide Degradation Monitoring of SiC MOSFETs Based on Transfer Characteristic with Temperature Compensation. IEEE Trans. Transp. Electrif. 2024, 10, 1837–1849. [Google Scholar] [CrossRef]
- Afanasev, V.; Bassler, M.; Pensl, G.; Schulz, M. Intrinsic SiC/SiO2 interface states. Phys. Status Solidi 1997, 162, 321–337. [Google Scholar] [CrossRef]
- Karki, U.; Peng, F.Z. Precursors of Gate-Oxide Degradation in Silicon Carbide MOSFETs. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018. [Google Scholar]
- Kang, J.; Liu, Q.; Luo, H.; Cao, H.; Zhang, Z.-H.; Xin, Z. Investigation of off-state stress induced degradation of SiC MOSFETs under short-circuit condition. IEEE Trans. Ind. Electron. 2023, 70, 5224–5234. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P. A Novel Model of the Aging Effect on the ON-State Resistance of SiC Power MOSFETs for High-Accuracy Package-Related Aging Evaluation. IEEE Trans. Ind. Electron. 2023, 70, 9495–9504. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P. A Junction Temperature and Package Aging Decoupling Evaluating Method for SiC MOSFETs Based on the Turn-on Drain-Source Current Overshoot. IEEE Trans. Power Electron. 2023, 38, 14537–14546. [Google Scholar] [CrossRef]
- Yang, F.; Ugur, E.; Akin, B. Evaluation of aging’s effect on temperature-sensitive electrical parameters in SiC mosfets. IEEE Trans. Power Electron. 2020, 35, 6315–6331. [Google Scholar] [CrossRef]
- Gonzalez, J.O.; Alatise, O.; Hu, J.; Ran, L.; Mawby, P.A. An investigation of temperature-sensitive electrical parameters for SiC Power MOSFETs. IEEE Trans. Power Electron. 2017, 32, 7954–7966. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Yang, Q.; Yang, F.; Gan, Y.; Zhang, H. Investigation and comparison of temperature-sensitive electrical parameters of SiC mosfet at extremely high temperatures. IEEE Trans. Power Electron. 2023, 38, 9660–9672. [Google Scholar] [CrossRef]
- Xue, P.; Davari, P. A Temperature-Dependent Analytical Transient Model of SiC MOSFET in Half-Bridge Circuits. IEEE Trans. Power Electron. 2025, 40, 892–905. [Google Scholar] [CrossRef]
- Niu, H.; Lorenz, R.D. Sensing Power MOSFET junction temperature using gate drive turn-on current transient properties. IEEE Trans. Ind. Appl. 2016, 52, 1677–1687. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P. An online junction temperature monitoring method for SiC MOSFETs based on a novel gate conduction model. IEEE Trans. Power Electron. 2021, 36, 11087–11096. [Google Scholar] [CrossRef]
- Zhang, Z.; Dyer, J.; Wu, X.; Wang, F.; Costinett, D.; Tolbert, L.M.; Blalock, B.J. Online junction temperature monitoring using intelligent gate drive for SiC power devices. IEEE Trans. Power Electron. 2019, 34, 7922–7932. [Google Scholar] [CrossRef]
- Dou, J.; Wang, Z.; Xin, G.; Shi, X. High-Accuracy Online Junction Temperature Measurement of Medium-Voltage SiC MOSFETs Based on Passive Turn-On Delay Time Integrator. IEEE Trans. Power Electron. 2025, 40, 4775–4779. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, X.; Shi, X.; Liu, Q.; Zhang, S.; Ouyang, R.; Jia, D.; Ma, N.; Gong, X. Online junction temperature estimation for SiC MOSFETs using drain voltage falling edge time. IEEE Trans. Electron. Devices 2023, 70, 5228–5235. [Google Scholar] [CrossRef]
- Du, M.; Liu, F.; Yin, J.; Dong, C.; Ouyang, Z. Junction temperature correction method for SiC MOSFET based on turn-off oscillation frequency of drain-source voltage. IEEE Trans. Electron. Devices 2024, 71, 6208–6215. [Google Scholar] [CrossRef]
- Quan, Y.; Pan, R.; Liu, T.; Zhou, X.; Feng, J.; Tian, Y.; Zheng, L.; Cheng, X. Online Junction Temperature Monitoring Method for SiC MOSFETs Based on Turn-Off Miller Plateau Voltage. IEEE Trans. Power Electron. 2024, 39, 15800–15810. [Google Scholar] [CrossRef]
- Hayashi, S.-I.; Wada, K. Operational Verification of Gate Drive Circuit with Condition Monitoring Function for Gate Oxide Degradation of SiC MOSFETs. IEEE Open J. Power Electron. 2024, 5, 709–717. [Google Scholar] [CrossRef]
- Stella, F.; Pellegrino, G.; Armando, E.; Daprà, D. Online junction temperature estimation of SiC power MOSFETs through on-state voltage mapping. IEEE Trans. Ind. Appl. 2018, 54, 3453–3462. [Google Scholar] [CrossRef]
- Luo, H.; Iannuzzo, F.; Turnaturi, M. Role of Threshold Voltage Shift in Highly Accelerated Power Cycling Tests for SiC MOSFET Modules. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1657–1667. [Google Scholar] [CrossRef]
- Yang, F.; Pu, S.; Xu, C.; Akin, B. Turn-on delay based real-time junction temperature measurement for SiC MOSFETs with aging compensation. IEEE Trans. Power Electron. 2021, 36, 1280–1294. [Google Scholar] [CrossRef]
- Farhadi, M.; Yang, F.; Pu, S.; Vankayalapati, B.T.; Akin, B. Temperature-independent gate-oxide degradation monitoring of SiC MOSFETs based on junction capacitances. IEEE Trans. Power Electron. 2021, 36, 8308–8324. [Google Scholar] [CrossRef]
- Ye, X.; Chen, C.; Wang, Y.; Zhai, G.; Vachtsevanos, G.J. Online Condition Monitoring of Power MOSFET Gate Oxide Degradation Based on Miller Platform Voltage. IEEE Trans. Power Electron. 2017, 32, 4776–4784. [Google Scholar] [CrossRef]
- Karki, U.; González-Santini, N.S.; Peng, F.Z. Effect of Gate-Oxide Degradation on Electrical Parameters of Silicon Carbide MOSFETs. IEEE Trans. Electron. Devices 2020, 67, 2544–2552. [Google Scholar] [CrossRef]
- Liu, J.; Yao, B.; Wei, X.; Zhang, Y.; Wang, H. An Online Gate Oxide Degradation Monitoring Method for SiC Mosfets Based on Turn-On Gate Voltage Filtering. IEEE Trans. Power Electron. 2024, 39, 5020–5026. [Google Scholar] [CrossRef]
- Lutz, J.; Schlangenotto, H.; Scheuermann, U.; De Doncker, R. Semiconductor Power Devices—Physics, Characteristics, Reliability; Springer: Cham, Switzerland, 2018; pp. 293–295. [Google Scholar]
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 314–319. [Google Scholar]
- Pérez-Tomás, A.; Brosselard, P.; Godignon, P.; Millan, J. Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors. J. Appl. Phys. 2006, 100, 114508. [Google Scholar] [CrossRef]
- Yang, L.; Bai, Y.; Li, C.; Chen, H.; Han, Z.; Tang, Y.; Hao, J.; Yang, C.; Tian, X.; Lu, J.; et al. Analysis of Mobility for 4H-SiC N/P-Channel MOSFETs Up To 300 °C. IEEE Trans. Electron. Devices 2021, 68, 3936–3941. [Google Scholar] [CrossRef]
- Agarwal, A.; Baliga, B.J. Implant straggle impact on 1.2 kV SiC power MOSFET static and dynamic parameters. IEEE J. Electron. Devices Soc. 2022, 10, 245–255. [Google Scholar] [CrossRef]
- Rumyantsev, S.L.; Shur, M.S.; Levinshtein, M.E.; Ivanov, P.A.; Palmour, J.W.; Agarwal, A.K.; Hull, B.A.; Ryu, S.-H. Channel mobility and on-resistance of vertical double implanted 4H-SiC MOSFETs at elevated temperatures. Semicond. Sci. Technol. 2009, 24, 075011. [Google Scholar] [CrossRef]
- Karki, U.; Peng, F.Z. Effect of Gate-Oxide Degradation on Electrical Parameters of Power MOSFETs. IEEE Trans. Power Electron. 2018, 33, 10764–10773. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Dimitrijev, S.; Haasmann, D.; Moghadam, H.A.; Pande, P.; Jadli, U. Comparison of Commercial Planar and Trench SiC MOSFETs by Electrical Characterization of Performance-Degrading Near-Interface Traps. IEEE Trans. Electron. Devices 2022, 69, 6225–6230. [Google Scholar] [CrossRef]
- Stojadinovic, N.; Manic, I.; Davidovic, V.; Danković, D.; Djorić-Veljković, S.; Golubović, S.; Dimitrijev, S. Electrical stressing effects in commercial power VDMOSFETs. IEE Proc. Circuits Devices Syst. 2006, 153, 281–288. [Google Scholar] [CrossRef]
- Chen, S.; Cai, C.; Wang, T.; Guo, Q.; Sheng, K. Cryogenic and high temperature performance of 4H-SiC power MOSFETs. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 207–210. [Google Scholar]
- Zhou, W.; Zhong, X.; Sheng, K. High temperature stability and the performance degradation of SiC MOSFETs. IEEE Trans. Power Electron. 2014, 29, 2329–2337. [Google Scholar] [CrossRef]
- Yin, S.; Tu, P.; Wang, P.; Tseng, K.J.; Qi, C.; Hu, X.; Zagrodnik, M.; Simanjorang, R. An accurate subcircuit model of SiC half-bridge module for switching-loss optimization. IEEE Trans. Ind. Appl. 2017, 53, 3840–3848. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, P.; Chen, T. A Gate Degradation Independent Online Junction Temperature Estimation Method for SiC MOSFETs Based on Residual Resistance. IEEE Trans. Power Electron. 2024, 39, 13771–13782. [Google Scholar] [CrossRef]
- JESD22-A108D; Temperature, Bias, and Operating Life. JEDEC Solid State Technology Association: Arlington, VA, USA, 2010.
- Yasui, K.; Hayakawa, S.; Funaki, T. Reliability Improvement of 3.3 kV Full-SiC Power Modules for Power Cycling Tests with Sintered Copper Die Attach Technology. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 1476–1485. [Google Scholar] [CrossRef]
Items | Details/Information |
---|---|
Test Temperature | 50 °C, 70 °C, 90 °C, 116 °C, 132 °C, 148 °C |
Test Current | DUT1: 6–18 A |
HTGB Hours | DUT1: Non-aged, 110 h; |
UDC | 200~300 V |
Inductor | 2 mH |
Gate Voltage | V1 = 12 V, V2 = 16.2 V |
Information of DUT1 | SCT3080KR(ROHM) with trench gate structure. |
Items | Details Information |
---|---|
Test Temperature | 50 °C, 70 °C, 90 °C, 116 °C, 132 °C, 148 °C |
Test Current | DUT1, 10.5–18 A |
HTGB Hours | 173 h; |
DUT1 | SCT3080KR (ROHM) |
Input Voltage | 100 V |
Output Voltage | 200~330 V |
Inductor Value | 2 mH |
Load | 20 Ω |
Gate Voltage | V1 = 12 V, V2 = 16.2 V |
Switching Frequency | 10 kHz |
Capacitor for Input | 470 uF (Aluminum capacitor), 2.2 uF × 2(PP film capacitor) |
Capacitor for Output | 220 uF (Aluminum capacitor), 2.2 uF × 2(PP film capacitor) |
DSP | TMS320F28335 |
FPGA | 10M08SCE144I7G |
Items | Details Information |
---|---|
Test Temperature | 70 °C, 90 °C, 116 °C, 132 °C, 148 °C |
Test Current | DUT2: 6–12 A |
HTGB Hours | DUT2: 0 h, 70 h, 90 h |
UDC | 200~300 V |
Inductor | 2 mH |
Gate Voltage | V1 = 12 V, V2 = 16.2 V |
Information of DUT2 | C3M0120100K(CREE) planar gate structure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Zhao, Z. A Gate Oxide Degradation and Junction Temperature Evaluation Method for SiC MOSFETs Based on an On-State Resistance Model. Electronics 2025, 14, 2278. https://doi.org/10.3390/electronics14112278
Wang P, Zhao Z. A Gate Oxide Degradation and Junction Temperature Evaluation Method for SiC MOSFETs Based on an On-State Resistance Model. Electronics. 2025; 14(11):2278. https://doi.org/10.3390/electronics14112278
Chicago/Turabian StyleWang, Peng, and Zhigang Zhao. 2025. "A Gate Oxide Degradation and Junction Temperature Evaluation Method for SiC MOSFETs Based on an On-State Resistance Model" Electronics 14, no. 11: 2278. https://doi.org/10.3390/electronics14112278
APA StyleWang, P., & Zhao, Z. (2025). A Gate Oxide Degradation and Junction Temperature Evaluation Method for SiC MOSFETs Based on an On-State Resistance Model. Electronics, 14(11), 2278. https://doi.org/10.3390/electronics14112278