Observer-Based Robust H∞ Control for Stochastic Markov Jump Delay Systems Through Dual Adaptive Sliding Mode Approach
Abstract
:1. Introduction
2. Problem Statement and Preliminaries
3. Main Results
3.1. Observer Design
3.2. Sliding Surface Design
- (1)
- The closed-loop system, comprising SMDs (12) and (16), is shown to be robustly MSE stable under the condition = 0, encompassing all inaccuracies that are deemed allowable.
- (2)
- The subsequent performance criterion with index is maintained for every that belongs to the space, that is
3.3. Performance Analysis
3.4. SMC Law Synthesise
- Step 1
- Giving all the system parameters , , B, , , , , , and a prescribed performance index ;
- Step 2
- Using the MATLAB LMI Toolbox to solve the LMIs in Theorem 1 based on the parameters given in step 1 so as to obtain gain matrices and ;
- Step 3
- Parameter initialization before simulation, including step size h, , , , , , and , etc.
- Step 4
- Employing the Euler’s method to develop MATLAB code,for j = 1:N⋮end;in which denotes the mapping after discretization.
4. Numerical Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof for Theorem 1
Appendix B. Proof for Theorem 2
References
- Shi, P.; Li, F. A survey on Markovian jump systems: Modeling and design. Int. J. Control Autom. Syst. 2015, 13, 1–16. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Zhou, T.; Liu, Y. Event-based asynchronous dissipative control for nonhomogeneous Markov jump systems. Trans. Inst. Meas. Control 2024, 46, 430–441. [Google Scholar] [CrossRef]
- Zong, G.; Qi, W.; Karimi, H.R. l1 control of positive semi-Markov jump systems with state delay. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 7569–7578. [Google Scholar] [CrossRef]
- Jiang, B.; Wu, Z.; Liu, Z.; Li, B. Adaptive sliding mode security control of wheeled mobile manipulators with Markov switching joints against adversarial attacks. Control Eng. Pract. 2023, 137, 105558. [Google Scholar] [CrossRef]
- Zhai, D.; An, L.; Li, J.; Zhang, Q. Fault detection for stochastic parameter-varying Markovian jump systems with application to networked control systems. Appl. Math. Model. 2016, 40, 2368–2383. [Google Scholar] [CrossRef]
- Xu, S.; Lam, J.; Mao, X. Delay-dependent H∞ control and filtering for uncertain Markovian jump systems with time-varying delays. IEEE Trans. Circuits Syst. Regul. Pap. 2007, 54, 2070–2077. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Yu, J. Adaptive sliding mode security control for stochastic Markov jump cyber-physical nonlinear systems subject to actuator failures and randomly occurring injection attacks. IEEE Trans. Ind. Inform. 2022, 19, 3155–3165. [Google Scholar] [CrossRef]
- Jiang, B.; Kao, Y.; Gao, C.; Yao, X. Passification of uncertain singular semi-Markovian jump systems with actuator failures via sliding mode approach. IEEE Trans. Autom. Control 2017, 62, 4138–4143. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Liang, J.; Liu, X. Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays. IEEE Trans. Neural Netw. 2009, 20, 1102–1116. [Google Scholar]
- Sakthivel, R.; Karimi, H.R.; Joby, M.; Santra, S. Resilient sampled-data control for Markovian jump systems with an adaptive fault-tolerant mechanism. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1312–1316. [Google Scholar] [CrossRef]
- Bolzern, P.; Colaneri, P.; De Nicolao, G. Stochastic stability of positive Markov jump linear systems. Automatica 2014, 50, 1181–1187. [Google Scholar] [CrossRef]
- Jiang, B.; Gao, C. Decentralized adaptive sliding mode control of large-scale semi-Markovian jump interconnected systems with dead-zone input. IEEE Trans. Autom. Control 2022, 67, 1521–1528. [Google Scholar] [CrossRef]
- Utkin, V.I.; Vadim, I. Sliding mode control. In Variable Structure Systems: From Principles to Implementation; Institution of Engineering and Technology: London, UK, 2004; Volume 66, p. 1. [Google Scholar]
- Islam, S.; Liu, X.P. Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 2010, 58, 2444–2453. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, M.; Xu, J. Robust adaptive sliding mode control of underactuated autonomous underwater vehicles with uncertain dynamics. Ocean. Eng. 2019, 173, 802–809. [Google Scholar] [CrossRef]
- Balaji, B.; Ganesan, S.; Pugazhendiran, P.; Subramanian, S. Sliding mode controlled DC microgrid system with enhanced response. J. Control Decis. 2024, 11, 331–344. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Liu, X.; Xia, Y. Fuzzy fixed-time event-triggered consensus control for uncertain nonlinear multi-agent systems with memory based learning. IEEE Trans. Fuzzy Syst. 2024, 32, 3682–3692. [Google Scholar] [CrossRef]
- Gao, X.; Han, Y. Event-triggered sliding mode control for singular discrete-time fuzzy Markov jump networked systems. Trans. Inst. Meas. Control 2024, 46, 01423312241232377. [Google Scholar] [CrossRef]
- Li, F.; Wu, L.; Shi, P.; Lim, C.C. State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties. Automatica 2015, 51, 385–393. [Google Scholar] [CrossRef]
- Zhang, P.; Kao, Y.; Hu, J.; Niu, B. Robust observer-based sliding mode H∞ control for stochastic Markovian jump systems subject to packet losses. Automatica 2021, 130, 109665. [Google Scholar] [CrossRef]
- Ren, J.; He, G.; Fu, J. Robust H∞ sliding mode control for nonlinear stochastic TS fuzzy singular Markovian jump systems with time-varying delays. Inf. Sci. 2020, 535, 42–63. [Google Scholar] [CrossRef]
- Wang, Z.; Lam, J.; Liu, X. Exponential filtering for uncertain Markovian jump time-delay systems with nonlinear disturbances. IEEE Trans. Circuits Syst. II Express Briefs 2004, 51, 262–268. [Google Scholar] [CrossRef]
- Qin, Y.; Liang, Y.; Yang, Y.; Pan, Q.; Yang, F. Minimum upper-bound filter of Markovian jump linear systems with generalized unknown disturbances. Automatica 2016, 73, 56–63. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, H.; Burnham, K.J. On stabilization of bilinear uncertain time-delay stochastic systems with Markovian juming parameters. IEEE Trans. Autom. Control 2002, 47, 640–646. [Google Scholar] [CrossRef]
- Su, X.; Wang, C.; Chang, H.; Yang, Y.; Assawinchaichote, W. Event-triggered sliding mode control of networked control systems with Markovian jump parameters. Automatica 2021, 125, 109405. [Google Scholar] [CrossRef]
- Shi, P.; Liu, M.; Zhang, L. Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements. IEEE Trans. Ind. Electron. 2015, 62, 5910–5918. [Google Scholar] [CrossRef]
- Yan, H.; Meng, M.Q.; Zhang, H. Robust H∞ filtering for uncertain stochastic Markovian jump systems with mode-dependent time delays and nonlinear disturbances. In Proceedings of the 2009 Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009; pp. 2104–2109. [Google Scholar]
- Xu, C.; Tong, D.; Chen, Q.; Zhou, W.; Shi, P. Exponential stability of Markovian juming systems via adaptive sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 954–964. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Wang, Y. Sliding-mode control for singular Markovian jump systems with Brownian motion based on stochastic sliding mode surface. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 494–505. [Google Scholar] [CrossRef]
- Jiang, B.; Kao, Y.; Gao, C. Integrator-based robust sliding mode control of uncertain stochastic Markovian jump delay systems with non-linear perturbations. IET Control Theory Appl. 2017, 11, 1124–1133. [Google Scholar] [CrossRef]
- Shi, P.; Xia, Y.; Liu, G.P.; Rees, D. On designing of sliding-mode control for stochastic jump systems. IEEE Trans. Autom. Control 2006, 51, 97–103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Meng, X.; Jiang, B. Observer-Based Robust H∞ Control for Stochastic Markov Jump Delay Systems Through Dual Adaptive Sliding Mode Approach. Electronics 2025, 14, 132. https://doi.org/10.3390/electronics14010132
Deng J, Meng X, Jiang B. Observer-Based Robust H∞ Control for Stochastic Markov Jump Delay Systems Through Dual Adaptive Sliding Mode Approach. Electronics. 2025; 14(1):132. https://doi.org/10.3390/electronics14010132
Chicago/Turabian StyleDeng, Jianping, Xin Meng, and Baoping Jiang. 2025. "Observer-Based Robust H∞ Control for Stochastic Markov Jump Delay Systems Through Dual Adaptive Sliding Mode Approach" Electronics 14, no. 1: 132. https://doi.org/10.3390/electronics14010132
APA StyleDeng, J., Meng, X., & Jiang, B. (2025). Observer-Based Robust H∞ Control for Stochastic Markov Jump Delay Systems Through Dual Adaptive Sliding Mode Approach. Electronics, 14(1), 132. https://doi.org/10.3390/electronics14010132