Improving Steady State Accuracy in Field-Weakened Six-Phase Induction Machines with Integrator and Modulated Predictive Control
Abstract
1. Introduction
2. ASPIM Model Description
3. Proposed Control Applied to the ASPIM
3.1. Mechanical Speed Control
3.2. PCC Based on FCS-MPC
3.3. Reduced Order Current Observers
3.4. Cost Function
3.5. Modulated PCC (MPCC)
3.6. Field Weakening Operation
3.7. Steady-State Current Regulator
4. Experimental Results
4.1. Figures of Merit
4.2. Steady-State Results
4.3. Transient Results
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASPIM | Asymmetrical six-phase induction machine |
FCS-MPC | Finite control version of model predictive control |
FOC | Field-oriented control |
FW | Field weakening |
IGBT | Isolated gate bipolar transistor |
IRFOC | Indirect rotor field oriented control |
KF | Kalman filter |
LC | Lead compensator |
LO | Luenberger observer |
LV | Large vector |
MV | Mid vector |
MVE | Mean value error |
MPCC | Modulated predictive control |
MSE | Mean square error |
PCC | Predictive current control |
PI | Proportional-integral |
SVM | Space vector modulation |
THD | Total harmonic distortion |
VSD | Vector space decomposition |
VSI | Voltage source inverter |
ZV | Null vector |
References
- Barrero, F.; Duran, M.J. Recent Advances in the Design, Modeling, and Control of Multiphase Machines: Part I. IEEE Trans. Ind. Electron. 2016, 63, 449–458. [Google Scholar] [CrossRef]
- Duran, M.J.; Barrero, F. Recent Advances in the Design, Modeling, and Control of Multiphase Machines: Part II. IEEE Trans. Ind. Electron. 2016, 63, 459–468. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Zheng, Z. A review of drive techniques for multiphase machines. CES Trans. Electr. Mach. Syst. 2018, 2, 243–251. [Google Scholar] [CrossRef]
- Prieto, I.G.; Duran, M.J.; Garcia-Entrambasaguas, P.; Bermudez, M. Field-oriented control of multiphase drives with passive fault tolerance. IEEE Trans. Ind. Electron. 2019, 67, 7228–7238. [Google Scholar] [CrossRef]
- Muduli, U.R.; Behera, R.K.; Al Hosani, K.; El Moursi, M.S. Direct torque control with constant switching frequency for three-to-five phase direct matrix converter fed five-phase induction motor drive. IEEE Trans. Power Electron. 2022, 37, 11019–11033. [Google Scholar] [CrossRef]
- Kali, Y.; Ayala, M.; Rodas, J.; Saad, M.; Doval-Gandoy, J.; Gregor, R.; Benjelloun, K. Current control of a six-phase induction machine drive based on discrete-time sliding mode with time delay estimation. Energies 2019, 12, 170. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.; Rojas, C.A. State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inform. 2013, 9, 1003–1016. [Google Scholar] [CrossRef]
- Rodriguez, J.; Garcia, C.; Mora, A.; Flores-Bahamonde, F.; Acuna, P.; Novak, M.; Zhang, Y.; Tarisciotti, L.; Davari, S.A.; Zhang, Z.; et al. Latest advances of model predictive control in electrical drives—Part I: Basic concepts and advanced strategies. IEEE Trans. Power Electron. 2021, 37, 3927–3942. [Google Scholar] [CrossRef]
- Mamdouh, M.; Abido, M.A. Simple Predictive Current Control of Asymmetrical Six-Phase Induction Motor with Improved Performance. IEEE Trans. Ind. Electron. 2022, 70, 7580–7590. [Google Scholar] [CrossRef]
- Aciego, J.J.; Prieto, I.G.; Duran, M.J. Model predictive control of six-phase induction motor drives using two virtual voltage vectors. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 7, 321–330. [Google Scholar] [CrossRef]
- González-Prieto, I.; Durán, M.; Bermúdez, M.; Barrero, F.; Martín, C. Assessment of Virtual-Voltage-based Model Predictive Controllers in Six-phase Drives under Open-Phase Faults. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 2634–2644. [Google Scholar] [CrossRef]
- Arahal, M.R.; Barrero, F.; Satué, M.G.; Ramírez, D.R. Predictive Control of Multi-Phase Motor for Constant Torque Applications. Machines 2022, 10, 211. [Google Scholar] [CrossRef]
- Gonzalez, O.; Ayala, M.; Romero, C.; Delorme, L.; Rodas, J.; Gregor, R.; Gonzalez-Prieto, I.; Durán, M.J. Model predictive current control of six-phase induction motor drives using virtual vectors and space vector modulation. IEEE Trans. Power Electron. 2022, 37, 7617–7628. [Google Scholar] [CrossRef]
- Lei, J.; Feng, S.; Wheeler, P.; Zhou, B.; Zhao, J. Steady-state error suppression and simplified implementation of direct source current control for matrix converter with model predictive control. IEEE Trans. Power Electron. 2019, 35, 3183–3194. [Google Scholar] [CrossRef]
- Norambuena, M.; Lezana, P.; Rodriguez, J. A method to eliminate steady-state error of model predictive control in power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2525–2530. [Google Scholar] [CrossRef]
- Favato, A.; Carlet, P.G.; Toso, F.; Torchio, R.; Bolognani, S. Integral model predictive current control for synchronous motor drives. IEEE Trans. Power Electron. 2021, 36, 13293–13303. [Google Scholar] [CrossRef]
- Goncalves, P.F.; Cruz, S.M.; Mendes, A.M. Disturbance observer based predictive current control of six-phase permanent magnet synchronous machines for the mitigation of steady-state errors and current harmonics. IEEE Trans. Ind. Electron. 2021, 69, 130–140. [Google Scholar] [CrossRef]
- Wang, L.; Gan, L. Integral FCS predictive current control of induction motor drive. IFAC Proc. Vol. 2014, 47, 11956–11961. [Google Scholar] [CrossRef]
- Jin, X.H.; Zhang, Y.; Xu, D.G. Static current error elimination algorithm for induction motor predictive current control. IEEE Access 2017, 5, 15250–15259. [Google Scholar] [CrossRef]
- Oliani, I.; Figueiredo, R.; Lourenço, L.F.N.; Pelizari, A.; Sguarezi Filho, A.J. Robust Predictive Current Control Using Discrete-Time Integral Action for Induction Motors. IEEE J. Emerg. Sel. Top. Power Electronics 2023, 11, 5766–5773. [Google Scholar] [CrossRef]
- Ayala, M.; Doval-Gandoy, J.; Rodas, J.; Gonzalez, O.; Gregor, R.; Rivera, M. A novel modulated model predictive control applied to six-phase induction motor drives. IEEE Trans. Ind. Electron. 2020, 68, 3672–3682. [Google Scholar] [CrossRef]
- Zhao, Y.; Lipo, T. Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Trans. Ind. Electron. 1995, 31, 1100–1109. [Google Scholar] [CrossRef]
- Harnefors, L.; Saarakkala, S.E.; Hinkkanen, M. Speed control of electrical drives using classical control methods. IEEE Trans. Ind. Appl. 2013, 49, 889–898. [Google Scholar] [CrossRef]
- Satué, M.G.; Arahal, M.R.; Ortega, M.G.; Ramírez, D.R. A simple rotor current estimation method for predictive control of multi-phase drives. Int. J. Circuit Theory Appl. 2022, 50, 4478–4491. [Google Scholar] [CrossRef]
- Martin, C.; Arahal, M.R.; Barrero, F.; Duran, M. Five-Phase Induction Motor Rotor Current Observer for Finite Control Set Model Predictive Control of Stator Current. IEEE Trans. Ind. Electron. 2016, 63, 4527–4538. [Google Scholar] [CrossRef]
- Martin, C.; Arahal, M.R.; Barrero, F.; Duran, M. Multiphase rotor current observers for current predictive control: A five-phase case study. Control Eng. Prac. 2016, 49, 101–111. [Google Scholar] [CrossRef]
- Rodas, J.; Barrero, F.; Arahal, M.R.; Martín, C.; Gregor, R. Online estimation of rotor variables in predictive current controllers: A case study using five-phase induction machines. IEEE Trans. Ind. Electron. 2016, 63, 5348–5356. [Google Scholar] [CrossRef]
- Ayala, M.; Doval-Gandoy, J.; Gonzalez, O.; Rodas, J.; Gregor, R.; Rivera, M. Experimental stability study of modulated model predictive current controllers applied to six-phase induction motor drives. IEEE Trans. Power Electron. 2021, 36, 13275–13284. [Google Scholar] [CrossRef]
- Novak, M.; Dragicevic, T.; Blaabjerg, F. Weighting factor design based on Artificial Neural Network for Finite Set MPC operated 3L-NPC converter. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 77–82. [Google Scholar] [CrossRef]
- Majmunović, B.; Dragičević, T.; Blaabjerg, F. Multi Objective Modulated Model Predictive Control of Stand-Alone Voltage Source Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 2559–2571. [Google Scholar] [CrossRef]
- Xu, X.; Novotny, D.W. Selection of the flux reference for induction machine drives in the field weakening region. IEEE Trans. Ind. Appl. 1992, 28, 1353–1358. [Google Scholar] [CrossRef]
- Kim, S.H.; Sul, S.K. Maximum torque control of an induction machine in the field weakening region. IEEE Trans. Ind. Appl. 1995, 31, 787–794. [Google Scholar] [CrossRef]
- Riveros, J.A.; Yepes, A.G.; Barrero, F.; Doval-Gandoy, J.; Bogado, B.; Lopez, O.; Jones, M.; Levi, E. Parameter identification of multiphase induction machines with distributed windings Part 2: Time-domain techniques. IEEE Trans. Energy Conv. 2012, 27, 1067–1077. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
() | 6.9 | () | 6.7 |
(mH) | 654.4 | (mH) | 626.8 |
(mH) | 614 | (mH) | 5.3 |
(rpm) | (kW) | 2 | |
(kg·) | 0.07 | (kg·/s) | 0.0004 |
P (pole pair) | 1 | 0.1533 | |
(Nm) | 7.5 | (A) | 2.2 |
500 | 0.1546 | 0.1518 | 0.2655 | 0.2470 | 1.5650 |
1000 | 0.1602 | 0.1600 | 0.2638 | 0.2593 | 1.3316 |
1500 | 0.1687 | 0.1678 | 0.2911 | 0.2946 | 1.9202 |
2000 | 0.1843 | 0.1890 | 0.3196 | 0.3219 | 2.0436 |
2550 | 0.2043 | 0.2156 | 0.3477 | 0.3507 | 3.1504 |
3000 | 0.2013 | 0.2037 | 0.3026 | 0.3094 | 3.2554 |
3400 | 0.2255 | 0.2334 | 0.3392 | 0.3471 | 3.8409 |
500 | 20.87 | 21.18 | 2.77 | 6.57 | |
1000 | 19.79 | 19.29 | 3.36 | 8.16 | |
1500 | 15.65 | 16.20 | 3.17 | 8.55 | |
2000 | 13.75 | 14.22 | 0.22 | 9.09 | |
2550 | 12.21 | 12.63 | 2.68 | 9.33 | |
3000 | 16.50 | 17.54 | 0.60 | 12.75 | |
3400 | 13.81 | 14.61 | 6.44 | 11.26 |
500 | 0.1545 | 0.1532 | 0.2693 | 0.2532 | 1.5877 |
1000 | 0.1536 | 0.1527 | 0.2764 | 0.2605 | 1.4949 |
1500 | 0.1548 | 0.1628 | 0.2894 | 0.2806 | 1.9880 |
2000 | 0.1611 | 0.1674 | 0.3053 | 0.3020 | 2.2003 |
2550 | 0.1610 | 0.1705 | 0.3308 | 0.3377 | 3.0439 |
3000 | 0.1596 | 0.1645 | 0.2872 | 0.2959 | 3.7133 |
3400 | 0.1781 | 0.1835 | 0.3210 | 0.3290 | 4.8528 |
500 | 20.26 | 20.82 | 0.01 | 0.05 | |
1000 | 19.31 | 19.67 | 0.00 | 0.14 | |
1500 | 17.85 | 18.78 | 0.00 | 0.03 | |
2000 | 16.06 | 16.43 | 0.01 | 0.06 | |
2550 | 12.99 | 14.24 | 0.03 | 0.00 | |
3000 | 17.81 | 18.83 | 0.05 | 0.00 | |
3400 | 16.26 | 16.77 | 0.00 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala, M.; Doval-Gandoy, J.; Rodas, J.; Gonzalez, O.; Gregor, R.; Delorme, L.; Romero, C.; Fleitas, A. Improving Steady State Accuracy in Field-Weakened Six-Phase Induction Machines with Integrator and Modulated Predictive Control. Electronics 2024, 13, 952. https://doi.org/10.3390/electronics13050952
Ayala M, Doval-Gandoy J, Rodas J, Gonzalez O, Gregor R, Delorme L, Romero C, Fleitas A. Improving Steady State Accuracy in Field-Weakened Six-Phase Induction Machines with Integrator and Modulated Predictive Control. Electronics. 2024; 13(5):952. https://doi.org/10.3390/electronics13050952
Chicago/Turabian StyleAyala, Magno, Jesus Doval-Gandoy, Jorge Rodas, Osvaldo Gonzalez, Raúl Gregor, Larizza Delorme, Carlos Romero, and Ariel Fleitas. 2024. "Improving Steady State Accuracy in Field-Weakened Six-Phase Induction Machines with Integrator and Modulated Predictive Control" Electronics 13, no. 5: 952. https://doi.org/10.3390/electronics13050952
APA StyleAyala, M., Doval-Gandoy, J., Rodas, J., Gonzalez, O., Gregor, R., Delorme, L., Romero, C., & Fleitas, A. (2024). Improving Steady State Accuracy in Field-Weakened Six-Phase Induction Machines with Integrator and Modulated Predictive Control. Electronics, 13(5), 952. https://doi.org/10.3390/electronics13050952