Two-Level Excitation Current Driver to Reduce the Driving Power of an Electromagnetic Contactor
Abstract
1. Introduction
2. Electromagnetic Contactors Analysis
2.1. Force Characteristics of Electromagnetic Contactors
2.2. Characteristics of Magnetic Flux According to the Gap of Electromagnetic Contactors
3. Proposed Two-Level Excitation Current Driver
3.1. Operation Description
3.2. Hardware Description
3.2.1. Analog-Type Two-Level Excitation Current Driver
3.2.2. Digital-Type Two-Level Excitation Current Driver
4. Simulation and Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Ye, Q.; Zeng, X.; Liu, S.; Chen, H.; Tao, Y.; Yu, X.; Wang, X. Preparation and Properties of Graphene Reinforced Copper Electrical Contact Materials for High-Voltage Direct Current Electrical Contacts. Electronics 2023, 13, 53. [Google Scholar] [CrossRef]
- Lee, H.; Kang, J.W.; Choi, B.Y.; Kang, K.M.; Kim, M.N.; An, C.G.; Yi, J.S.; Won, C.Y. Energy Management System of DC Microgrid in Grid-Connected and Stand-Alone Modes: Control, Operation and Experimental Validation. Energies 2021, 14, 581. [Google Scholar] [CrossRef]
- Uzair, M.; Abbas, G.; Hosain, S. Characteristics of battery management systems of electric vehicles with consideration of the active and passive cell balancing process. World Electr. Veh. J. 2022, 12, 120. [Google Scholar] [CrossRef]
- Langenberg, N.; Kimpeler, S.; Moser, A. Interconnecting Power-Electronic Buck Converter Modules in a Novel High-Power Test Bench for MVDC Circuit Breakers. Energies 2022, 15, 7915. [Google Scholar] [CrossRef]
- Belda, N.A.; Smeets, R.P.P. Test circuits for HVDC circuit breakers. IEEE Trans. Power Deliv. 2016, 32, 285–293. [Google Scholar]
- Ke, Y.; Zhang, W.; Suo, C.; Wang, Y.; Ren, Y. Research on low-voltage AC series arc-fault detection method based on electromagnetic radiation characteristics. Energies 2022, 15, 1829. [Google Scholar] [CrossRef]
- Lee, K.A.; Cho, Y.M.; Lee, H.J. Circuit model and analysis of molded case circuit breaker interruption phenomenon. Electronics 2020, 9, 2047. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Xu, W.; Gong, Y.; Peng, Y.; Zhong, S.; Xie, S. Performance comparison of electromagnetic generators based on different circular magnet arrangements. Energy 2022, 258, 124759. [Google Scholar] [CrossRef]
- Peng, Y.; Xu, W.; Gong, Y.; Peng, X.; Li, Z. Electromechanical coupling of a 3.88 W harvester with circumferential step-size field: Modeling, validation and self-powered wearable applications. Smart Mater. Struct. 2024, 33, 025039. [Google Scholar] [CrossRef]
- Bensalah, A.; Barakat, G.; Amara, Y. Electrical generators for large wind turbine: Trends and challenges. Energies 2022, 15, 6700. [Google Scholar] [CrossRef]
- Jo, K.Y.; Duong, T.D.; Choi, J.H. Emerging technologies in power systems. Electronics 2021, 11, 71. [Google Scholar] [CrossRef]
- Bento, A.R.F.; Bento, F.; Cardoso, A.J.M. A review on Hybrid Circuit Breakers for DC applications. IEEE Open J. Ind. Electron. Soc. 2023, 4, 432–450. [Google Scholar] [CrossRef]
- Bak, H.J.; Ro, J.S.; Chung, T.K.; Jung, H.K. Characteristics analysis and design of a novel magnetic contactor for a 220 V/85 A. IEEE Trans. Magn. 2013, 49, 5498–5506. [Google Scholar] [CrossRef]
- Gabdullin, N.; Ro, J.S. Energy-efficient eco-friendly zero-holding-energy magnetic contactor for industrial and vehicular applications. IEEE Trans. Veh. Technol. 2020, 69, 5000–5011. [Google Scholar] [CrossRef]
- Sun, S.; Cui, J.; Du, T. Research on the influence of vibrations on the dynamic characteristics of ac contactors based on energy analysis. Energies 2020, 13, 559. [Google Scholar] [CrossRef]
- Zeng, G.; Yang, X. Analysis, Design, and Optimization of a Novel Asymmetrical Bistable Short Mover Permanent Magnet Actuator for High-Voltage Circuit Breaker Application. Actuators 2022, 11, 196. [Google Scholar] [CrossRef]
- Nascimento, R.; Ramos, F.; Pinheiro, A.; Junior, W.D.A.S.; Arcanjo, A.M.; Filho, R.F.D.; Mohamed, M.A.; Marinho, M.H. Case Study of Backup Application with Energy Storage in Microgrids. Energies 2022, 14, 9514. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Zhang, L.; Xue, S.; Dong, E.; Zou, J. A novel model of electromechanical contactors for predicting dynamic characteristics. Energies 2021, 14, 7466. [Google Scholar] [CrossRef]
- Rahman, R.; Bandyopadhyay, S. The cost of energy-efficiency in digital hardware: The trade-off between energy dissipation, energy–delay product and reliability in electronic, magnetic and optical binary switches. Appl. Sci. 2021, 11, 5590. [Google Scholar] [CrossRef]
- Fang, S.; Chen, Y.; Yang, Y. Optimization design and energy-saving control strategy of high power dc contactor. Int. J. Electr. Power Energy Syst. 2020, 117, 105633. [Google Scholar] [CrossRef]
- Jiang, J.; Lin, H.; Fang, S. Multi-objective optimization of a permanent magnet actuator for high voltage vacuum circuit breaker based on adaptive surrogate modeling technique. Energies 2019, 12, 4695. [Google Scholar] [CrossRef]
- Kazimierczuk, M.K.; Sekiya, H. Design of AC resonant inductors using area product method. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 994–1001. [Google Scholar]
- Cho, Y.M.; Park, H.J.; Lee, H.J.; Lee, K.A. Analysis of Short-Circuit and Dielectric Recovery Characteristics of Molded Case Circuit Breaker according to External Environment. Electronics 2022, 11, 3575. [Google Scholar] [CrossRef]
- Riba, J.R.; Garcia, A.; Cusidó, J.; Delgado, M. Dynamic model for AC and DC contactors–simulation and experimental validation. Simul. Model. Pract. Theory 2011, 19, 1918–1932. [Google Scholar] [CrossRef]
- Tang, L.; Qu, H.; Xu, Z. Research on double closed-loop control strategy of contactors based on flux linkage observers. IEEE Trans. Ind. Electron. 2021, 69, 2769. [Google Scholar] [CrossRef]
- Rahman, A.; Mizuno, T.; Takasaki, M.; Ishino, Y. An equivalent circuit analysis and suspension characteristics of AC magnetic suspension using magnetic resonant coupling. Actuators 2020, 9, 52. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, T.-H.; Kim, R.-Y.; Lim, S.-K. Two-Level Excitation Current Driver to Reduce the Driving Power of an Electromagnetic Contactor. Electronics 2024, 13, 916. https://doi.org/10.3390/electronics13050916
Park T-H, Kim R-Y, Lim S-K. Two-Level Excitation Current Driver to Reduce the Driving Power of an Electromagnetic Contactor. Electronics. 2024; 13(5):916. https://doi.org/10.3390/electronics13050916
Chicago/Turabian StylePark, Tae-Hwan, Rae-Young Kim, and Sang-Kil Lim. 2024. "Two-Level Excitation Current Driver to Reduce the Driving Power of an Electromagnetic Contactor" Electronics 13, no. 5: 916. https://doi.org/10.3390/electronics13050916
APA StylePark, T.-H., Kim, R.-Y., & Lim, S.-K. (2024). Two-Level Excitation Current Driver to Reduce the Driving Power of an Electromagnetic Contactor. Electronics, 13(5), 916. https://doi.org/10.3390/electronics13050916