n77 Radio Frequency Power Amplifier Module for 5G New-Radio High-Power User Equipment Mobile Handset Applications
Abstract
1. Introduction
2. Circuit Design Specification
3. Design of n77 HPUE Power Amplifier Module
4. Experimental Results
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, B.; Kim, J.; Kim, D.; Son, J.; Cho, Y.; Kim, J.; Park, B. Push the Envelope: Design Concepts for Envelope-Tracking Power Amplifiers. IEEE Microw. Mag. 2013, 14, 68–81. [Google Scholar] [CrossRef]
- Asbeck, P.; Popovic, Z. ET Comes of Age. IEEE Microw. Mag. 2016, 17, 16–25. [Google Scholar] [CrossRef]
- Wang, F.; Kimball, D.F.; Lie, D.Y.; Asbeck, P.M.; Larson, L.E. A Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier. IEEE J. Solid-State Circuits 2007, 42, 1271–1281. [Google Scholar] [CrossRef]
- Wang, F.; Yang, A.H.; Kimball, D.F.; Larson, L.E.; Asbeck, P.M. Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications. IEEE Trans. Microw. Theory Tech. 2005, 53, 1244–1255. [Google Scholar] [CrossRef]
- Hassan, M.; Larson, L.E.; Leung, W.; Kimball, D.F.; Asbeck, P.M. A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications. IEEE Trans. Microw. Theory Tech. 2012, 60, 1321–1330. [Google Scholar] [CrossRef]
- Moon, J.; Son, J.; Lee, J.; Kim, B. A multimode/multiband envelope tracking transmitter with broadband saturated amplifier. IEEE Trans. Microw. Theory Tech. 2011, 59, 3463–3473. [Google Scholar] [CrossRef]
- Paek, J.-S.; Kim, W.; Kang, S.; Lee, J.; Pyo, S.; Cho, Y.; Jang, D.; Hur, Y. A 5G New Radio SAW-less RF Transmitter with a 100 MHz Envelope Tracking HPUE n77 Power Amplifier Module. In Proceedings of the 2021 Symposium on VLSI Circuits, Kyoto, Japan, 13–19 June 2021; pp. 1–2. [Google Scholar]
- Kim, D.; Bang, J.-S.; Baek, J.; Park, S.; Jung, Y.-H.; Han, J.; Kim, I.-H.; Jung, S.-Y.; Nomiyama, T.; Paek, J.-S.; et al. A Hybrid Switching Supply Modulator Achieving 130 MHz Envelope-Tracking Bandwidth and 10W Output Power for 2G/3G/LTE/NR RF Power Amplifiers. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; pp. 476–477. [Google Scholar]
- Technical Specification; 5G NR.; Physical Layer Procedures for Control, Document TS 38.213, 3GPP. Available online: https://www.etsi.org/deliver/etsi_ts/138200_138299/138213/16.02.00_60/ts_138213v160200p.pdf (accessed on 13 February 2024).
- Cripps, S.C. RF Power Amplifiers for Wireless Communications, 2nd ed.; Artech House: Norwood, MA, USA, 2006. [Google Scholar]
- He, X.; Sinderen, J. A low-power, low-EVM, SAW-less WCDMA transmitter using direct quadrature voltage modulation. IEEE J. Solid-State Circuits 2009, 44, 3448–3458. [Google Scholar] [CrossRef]
- Mirzaei, A.; Murphy, D.; Darabi, H. Analysis of Direct-Conversion IQ Transmitters with 25% Duty-Cycle Passive Mixers. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 2318–2331. [Google Scholar] [CrossRef]
- Kim, J.; Jang, W.; Lee, Y.; Kim, W.; Oh, S.; Lee, J.; Choi, J.; Chun, J.H.; Cho, T.B. Design and Anaysis of a 12-b current-Steering DAC in a 14-nm FinFET Technology for 2G/3G/4G Cellular Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 3723–3732. [Google Scholar] [CrossRef]
- Kim, W.; Hong, H.-K.; Roh, Y.-J.; Kang, H.-W.; Hwang, S.-I.; Jo, D.-S.; Chang, D.-J.; Seo, M.-J.; Ryu, S.-T. A 0.6 V 12 b 10 MS/s Low-Noise Asynchronous SAR-Assisted Time-Interleaved SAR (SATI-SAR) ADC. IEEE J. Solid-State Circuits 2016, 51, 1826–1839. [Google Scholar] [CrossRef]
- Liu, Q.; Kwon, D.; Bui, Q.; Choi, J.; Lee, J.; Baek, S.; Heo, S.; Cho, T.B. A 1.4-to-2.7GHz High-Efficiency RF Transmitter with an Automatic 3FLO-Supression Tracking-Notch-Filter Mixer Supporting HPUE in 14nm FinFET CMOS. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 11–15 February 2021; pp. 476–477. [Google Scholar]
- Jung, W.; Kang, S.; Jeong, D.; Son, K.Y.; Lee, J.; Lee, J.; Paek, J.-S. A Sub-6GHz 5G New Radio Multi-Band Transmitter with a Switchable Transformer in 14nm FinFET CMO. In Proceedings of the 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Atlanta, GA, USA, 5–9 June 2021. [Google Scholar]
- Kang, S.; Jeon, M.-S.; Kim, J. Highly Efficient 5.15- to 5.85-GHz Neutralized HBT Power Amplifier for LTE Applications. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 254–256. [Google Scholar] [CrossRef]
- Baek, J.; Nomiyama, T.; Park, S.; Jung, Y.H.; Kim, D.; Han, J.; Bang, J.S.; Lee, Y.; Kim, I.H.; Paek, J.S.; et al. A Voltage-Tolerant Three-Level Buck-Boost DC-DC Converter with Continuous Transfer Current and Flying Capacitor Soft Achieving 96.8% Power Efficiency and 0.87 μs/V DVS Rate. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 202–203. [Google Scholar]
- Paek, J.S.; Youn, Y.S.; Choi, J.H.; Kim, D.S.; Jung, J.H.; Choo, Y.H.; Lee, S.J.; Lee, S.C.; Cho, T.B.; Kang, I. An RF-PA supply modulator achieving 83% efficiency and -136 dBm/Hz noise for LTE-40MHz and GSM 35 dBm applications. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 354–355. [Google Scholar]
- Paek, J.S.; Kim, D.; Bang, J.S.; Baek, J.; Choi, J.; Nomiyama, T.; Han, J.; Choo, Y.; Youn, Y.; Park, E.; et al. An 88%-Efficiency Supply Modulator Achieving 1.08μs/V Fast Transition and 100 MHz Envelope-Tracking Bandwidth for 5G New Radio RF Power Amplifier. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 238–239. [Google Scholar]
- Ho, C.-Y.; Lin, S.-M.; Meng, C.-H.; Hong, H.-P.; Yan, S.-H.; Kuo, T.-H.; Peng, C.-S.; Hsiao, C.-H.; Chen, H.-H.; Sung, D.-W.; et al. An 87.1% Efficiency RF-PA Envelope-Tracking Modulator for 80MHz LTE-Advanced Transmitter and 31dBm PA Output Power for HPUE in 0.153 μm CMOS. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 432–433. [Google Scholar]
- Arno, P.; Thomas, M.; Molata, V.; Jerabek, T. Envelope Modulator for Multimode Transmitters with AC-Coupled Multilevel Regulators. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 296–297. [Google Scholar]
- Riehl, P.; Fowers, P.; Hong, H.; Ashburn, M. An AC-coupled hybrid envelope modulator for HSUPA transmitters with 80% Modulator. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 364–365. [Google Scholar]
Condition | CP-OFDM (PAPR = 9 dB) | DFT-s-OFDM (PAPR = 6 dB) | |||||
---|---|---|---|---|---|---|---|
Mod. | RB | MPR (dB) | PC3 | PC2 | MPR (dB) | PC3 | PC2 |
(dBm) | (dBm) | ||||||
QPSK | Inner | 1.5 | 21.5 | 24.5 | 0 | 23 | 26 |
Outer | 3 | 20 | 23 | 1 | 22 | 25 | |
16QAM | Inner | 2 | 21 | 24 | 1 | 22 | 25 |
Outer | 3 | 20 | 23 | 2 | 21 | 24 | |
64QAM | Outer | 3.5 | 19.5 | 22.5 | 2.5 | 20.5 | 23.5 |
256QAM | Outer | 6.5 | 16.5 | 19.5 | 4.5 | 18.5 | 21.5 |
Modulation | Supply Mode | Pout (dBm) | ACLR (dBc) | Pdc * (W) | EVM (%) |
---|---|---|---|---|---|
DFT_QPSK 100 MHz | APT | 27 | −37.1 | 4.10 | 1.40 |
ET | 27 | −37.0 | 3.15 | 1.54 | |
CP_QPSK 100 MHz | APT | 26 | −38.2 | 4.13 | 1.27 |
ET | 26 | −38.4 | 3.17 | 1.29 | |
DFT_256QAM 100 MHz | APT | 24.5 | −38.2 | 2.54 | 1.6 |
ET | 24.5 | −38.3 | 2.09 | 1.34 | |
CP_256QAM 100 MHz | APT | 23 | −42.0 | 2.54 | 1.50 |
ET | 23 | −41.5 | 1.9 | 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paek, J.-S. n77 Radio Frequency Power Amplifier Module for 5G New-Radio High-Power User Equipment Mobile Handset Applications. Electronics 2024, 13, 908. https://doi.org/10.3390/electronics13050908
Paek J-S. n77 Radio Frequency Power Amplifier Module for 5G New-Radio High-Power User Equipment Mobile Handset Applications. Electronics. 2024; 13(5):908. https://doi.org/10.3390/electronics13050908
Chicago/Turabian StylePaek, Ji-Seon. 2024. "n77 Radio Frequency Power Amplifier Module for 5G New-Radio High-Power User Equipment Mobile Handset Applications" Electronics 13, no. 5: 908. https://doi.org/10.3390/electronics13050908
APA StylePaek, J.-S. (2024). n77 Radio Frequency Power Amplifier Module for 5G New-Radio High-Power User Equipment Mobile Handset Applications. Electronics, 13(5), 908. https://doi.org/10.3390/electronics13050908