Smart Aquaponics: An Automated Water Quality Management System for Sustainable Urban Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Design and Control of Aquaponic System
2.2. PID-Controlled Water System
2.3. Overall Hardware Design
2.4. Mathematicial Modelling
- The density and heat capacity of the water are constant.
- The temperature of the inlet water tank is constant (27 °C).
- The level of water in the tank is constant.
- The cross-sectional area of the tank is constant.
- The heat losses to the surroundings are neglected.
2.5. PID Water Level Control Process
2.6. Hardware Design
- A.
- pH (pondus hydrogenii) sensor
- B.
- Water level sensor
- C.
- Temperature sensor
- D.
- Turbidity sensor
- E.
- Total dissolved solids sensor
- F.
- LCD
- G.
- LED grow light
- H.
- Water and aerator pump
- I.
- Fish feeder automation
- J.
- PIC18F4550 microcontroller
- K.
- Relay
- L.
- Water heater
- M.
- Solenoid valve
- N.
- ESP8266 Wi-Fi
2.7. Software Flowchart
3. Results
4. Discussion
- A.
- For the vegetable tank
- B.
- For the fish tank
- C.
- For the water heater
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pasha, A.K.; Mulyana, E.; Hidayat, C.; Ramdhani, M.A.; Kurahman, O.T.; Adhipradana, M. System Design of Controlling and Monitoring on Aquaponic Based on Internet of Things. In Proceedings of the 2018 4th International Conference on Wireless and Telematics (ICWT), Nusa Dua, Indonesia, 12–13 July 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Mahmood, Q.A.; Nawaf, A.T.; Esmael, M.N.; Abdulateef, L.T.; Dahham, O.S. PID Temperature Control of Demineralized Water Tank. IOP Conf. Ser. Mater. Sci. Eng. 2018, 454, 012031. [Google Scholar] [CrossRef]
- CarlBroadbent. NFT vs. Dwc Aquaponics: Which Is Better? Gardenia Organic. 18 October 2021. Available online: https://gardeniaorganic.com/nft-vs-dwc-aquaponics/ (accessed on 15 February 2023).
- Defa, R.P.; Ramdhani, M.; Priramadhi, R.A.; Aprillia, B.S. Automatic controlling system and IOT based monitoring for ph rate on the aquaponics system. J. Phys. Conf. Ser. 2019, 1367, 012072. [Google Scholar] [CrossRef]
- Erguzel, T.Y. A Hybrid PSO-PID Approach for Trajectory Tracking Application of a Liquid Level Control Process. Int. J. Optim. Control. Theor. Appl. 2015, 5, 63–73. [Google Scholar] [CrossRef]
- Kitayama, M.; Nguyen, D.T.; Lu, N.; Takagaki, M. Effect of light quality on physiological disorder, growth, and secondary metabolite content of water spinach (Ipomoea aquatica forsk) cultivated in a closed-type plant production system. Korean J. Hortic. Sci. Technol. 2019, 37, 206–218. [Google Scholar] [CrossRef]
- Fish Tank Heater Tips for Cold Weather. Home. Available online: https://www.aqueon.com/articles/fish-tank-heater-tips-for-cold-weather (accessed on 25 February 2023).
- Hitachi, Semiconductor & Integrated Circuits. HD44780U (LCD-II) (Dot Matrix Liquid Crystal Display Controller/Driver); Hitachi, Ltd.: Tokyo, Japan, 1998. [Google Scholar]
- Mamatha, M.N.; Namratha, S.N. Design & implementation of indoor farming using automated aquaponics system. In Proceedings of the 2017 IEEE International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Chennai, India, 2–4 August 2017. [Google Scholar] [CrossRef]
- Manju, M.; Karthik, V.; Hariharan, S.; Sreekar, B. Real Time Monitoring of the environmental parameters of an aquaponic system based on internet of things. In Proceedings of the 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), Chennai, India, 23–24 March 2017. [Google Scholar] [CrossRef]
- Mustapha, M.; Okafor, B.; Olaoti, K.; Oyelakin, O. Effects of three different photoperiods on the growth and body coloration of juvenile African catfish, Clarias gariepinus (Burchell). Arch. Pol. Fish. 2012, 20, 55–59. [Google Scholar] [CrossRef]
- Saaid, M.F.; Fadhil, N.S.; Ali, M.S.; Noor, M.Z. Automated indoor aquaponic cultivation technique. In Proceedings of the 2013 IEEE 3rd International Conference on System Engineering and Technology, Shah Alam, Malaysia, 19–20 August 2013. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The Vertical Farm: A review of developments and implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef]
- Sukrismon, Y.; Hidayatullah, N.; Mufti, N.; Handayani, A.N.; Horng, G.J. Smart fish pond for economic growing in catfish farming. In Proceedings of the 2019 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), Jember, Indonesia, 16–17 October 2019. [Google Scholar] [CrossRef]
- Setiadi, E.; Taufik, I.; Widyastuti, Y.R.; Ardi, I.; Puspaningsih, D. Improving productivity and water quality of catfish, Clarias sp. cultured in an aquaponic ebb-tide system using different filtration. IOP Conf. Ser. Earth Environ. Sci. 2019, 236, 012026. [Google Scholar] [CrossRef]
- Suwandi, B.; Istianto, Y.; Nugroho, B.; Taufik, N.; Azhari, S.; Astawa, I.M.; Adi Marianto, F.; Ma’arif, R.A.; Hanifa, R. Development of a low-cost TDS sensor using an electric plug with the curve fitting method approaches. In Proceedings of the 2022 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Bandung, Indonesia, 6–7 December 2022. [Google Scholar] [CrossRef]
- Singapore: Food Security Despite the Odds. Food for Thought. Available online: https://www.sfa.gov.sg/food-for-thought/article/detail/singapore-food-security-despite-the-odds (accessed on 21 March 2023).
- Vito Nanda, C.; Nur Khozin, M. Cultivation of water spinach using a hydroponic system at different AB mix concentrations. J. Soilscape Agric. 2022, 1, 1–6. [Google Scholar] [CrossRef]
- Samba, N.; Nunomura, O.; Lu, N.; Johkan, M.; Nakano, A.; Tsukagoshi, S. Cucumber (Cucumis sativus L.) Growth and Productivity under Solar Radiation-Based Quantitative Nutrient Management in Hydroponic System. Agronomy 2024, 14, 296. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, T.; Guo, J.; Zhong, J.; Li, D.; Shi, H.; Liu, C.; Xiang, R.; Sun, M. Effects of Substitute Substrate, Water, and Fertilizer Management on the Growth of Potted Chrysanthemums. Horticulturae 2024, 10, 138. [Google Scholar] [CrossRef]
- Chaabane, S.; Riahi, K.; Khlifi, S.; Slama, E.; Vanclooster, M. Assessing the Performance of a Citizen Science Based Water Quality Monitoring Program for Nitrates Using Test Strips Implemented in the Medjerda Hydrosystem in Northern Tunisia. Hydrology 2024, 11, 6. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, Z.; Chu, X.; Wang, W. Parallel Intelligent Monitoring System of Port Water Quality Based on the ACP Method. J. Mar. Sci. Eng. 2024, 12, 218. [Google Scholar] [CrossRef]
- Jakovljevic, G.; Álvarez-Taboada, F.; Govedarica, M. Long-Term Monitoring of Inland Water Quality Parameters Using Landsat Time-Series and Back Propagated ANN: Assessment and Usability in a Real-Case Scenario. Remote Sens. 2024, 16, 68. [Google Scholar] [CrossRef]
- Gao, L.; Shangguan, Y.; Sun, Z.; Shen, Q.; Shi, Z. Estimation of Non-Optically Active Water Quality Parameters in Zhejiang Province Based on Machine Learning. Remote Sens. 2024, 16, 514. [Google Scholar] [CrossRef]
- Gilbert, K.M.; Shi, Y. Urban Growth Monitoring and Prediction Using Remote Sensing Urban Monitoring Indices Approach and Integrating CA-Markov Model: A Case Study of Lagos City, Nigeria. Sustainability 2024, 16, 30. [Google Scholar] [CrossRef]
- Addas, A.; Tahir, M.; Ismat, N. Enhancing Precision of Crop Farming towards Smart Cities: An Application of Artificial Intelligence. Sustainability 2024, 16, 355. [Google Scholar] [CrossRef]
- Zhai, B.; Sun, M.; Shen, X.; Zhu, Y.; Li, G.; Du, S. Effects of Stand Density on Growth, Soil Water Content and Nutrients in Black Locust Plantations in the Semiarid Loess Hilly Region. Sustainability 2024, 16, 376. [Google Scholar] [CrossRef]
- Masood, M.U.; Rashid, M.; Haider, S.; Naz, I.; Pande, C.B.; Heddam, S.; Alshehri, F.; Elkhrachy, I.; Ahsan, A.; Sammen, S.S. Exploring Groundwater Quality Assessment: A Geostatistical and Integrated Water Quality Indices Perspective. Water 2024, 16, 138. [Google Scholar] [CrossRef]
- Yanes, A.R.; Martinez, P.; Ahmad, R. Towards automated aquaponics: A review on monitoring, IOT, and Smart Systems. J. Clean. Prod. 2020, 263, 121571. [Google Scholar] [CrossRef]
- Bados, J.S.; Morejon, I.Y. Design of a PID control system for a wastewater treatment plant. In Proceedings of the 2020 3rd International Conference on Robotics, Control and Automation Engineering (RCAE), Chongqing, China, 5–8 November 2020. [Google Scholar] [CrossRef]
- Yosmaniar; Pantjara, B.; Setiadi, E. The growth performance and survival rate of catfish (Clarias sp.) that given probiotic controlling nitrogen. IOP Conf. Ser. Earth Environ. Sci. 2020, 521, 012007. [Google Scholar] [CrossRef]
- Yuzhakov, M.S.; Kazanin, V.A.; Berzin, A.K.; Kuleshov, G.E.; Badin, A.V.; Filchenko, D.I. IOT based system for real-time monitoring the hydrogen-ion activity in water bodies. J. Phys. Conf. Ser. 2021, 1989, 012021. [Google Scholar] [CrossRef]
No | Type of Sensor | Indicator | Specification |
---|---|---|---|
1 | pH sensor | Catfish | 6–9 pH |
Water spinach | 5.5–6.5 pH | ||
2 | Temperature sensor | Catfish | 25 °C–30 °C |
Water spinach | 25 °C–30 °C | ||
3 | Ultrasonic sensor | Range distance | 0–30 cm |
4 | Turbidity sensor | Range measurement | 0–50 NTU |
5 | TDS sensor | PPM range | 800–1000 PPM |
Parameters | Value | Units |
---|---|---|
Area of tank | 1757.5 | |
Height of fish tank | 26 | |
Flow rate | 200 | L/H |
Resistance | 0.472 |
Parameters | Value | Units |
---|---|---|
Area of tank | 1757.5 | |
Height of fish tank | 26 | |
Flow rate | 55.55 | |
Density of water | 1 | |
Max power of electrical equipment | 50 | W |
Vegetable Tank | P | I | D | Times |
---|---|---|---|---|
1 | 47 | 0 | 0 | 150 s (overdamped) |
2 | 47 | 1.5 | 0 | 60 s (overshoot) |
3 | 47 | 1.5 | 174 | 200 s (overshoot @ 100 s) |
Fish Tank | P | I | D | Times |
---|---|---|---|---|
2 | 20 | 0 | 0 | 60 s (underdamped) |
3 | 20 | 1 | 0 | 300 s (overshoot @140 s) |
4 | 30 | 0.5 | 174 | 250 s (critically damped) |
Heater | P | I | D | Times |
---|---|---|---|---|
1 | 10 | 0 | 0 | 70 s (underdamped) |
2 | 10 | 1.5 | 0 | 130 s (overshoot @ 40 s) |
3 | 4.7 | 0.04 | 31.88 | 350 s (critically damped) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kok, C.L.; Kusuma, I.M.B.P.; Koh, Y.Y.; Tang, H.; Lim, A.B. Smart Aquaponics: An Automated Water Quality Management System for Sustainable Urban Agriculture. Electronics 2024, 13, 820. https://doi.org/10.3390/electronics13050820
Kok CL, Kusuma IMBP, Koh YY, Tang H, Lim AB. Smart Aquaponics: An Automated Water Quality Management System for Sustainable Urban Agriculture. Electronics. 2024; 13(5):820. https://doi.org/10.3390/electronics13050820
Chicago/Turabian StyleKok, Chiang Liang, I Made Bagus Pradnya Kusuma, Yit Yan Koh, Howard Tang, and Ah Boon Lim. 2024. "Smart Aquaponics: An Automated Water Quality Management System for Sustainable Urban Agriculture" Electronics 13, no. 5: 820. https://doi.org/10.3390/electronics13050820
APA StyleKok, C. L., Kusuma, I. M. B. P., Koh, Y. Y., Tang, H., & Lim, A. B. (2024). Smart Aquaponics: An Automated Water Quality Management System for Sustainable Urban Agriculture. Electronics, 13(5), 820. https://doi.org/10.3390/electronics13050820