Knowledge-Guided Heterogeneous Graph Convolutional Network for Aspect-Based Sentiment Analysis
Abstract
:1. Introduction
- (1)
- We propose a new knowledge-guided heterogeneous graph convolutional network for aspect-based sentiment analysis. Through the utilization of BiLSTM, HGCN, and external knowledge, the model incorporates multifaceted features of semantics, syntax, and additional knowledge.
- (2)
- A dynamic weighting mechanism is proposed to address the underutilization of BERT and the inconsistency between BERT and GCN disambiguation in previous ABSA tasks. Sentence and aspect nodes, as well as their connection weights, are explicitly defined and enhanced with external sentiment knowledge when constructing the heterogeneous graph.
- (3)
- We also introduce external affective knowledge in a different manner, obtaining knowledge embeddings for both the aspect and context to individually capture affective information corresponding to specific aspects.
2. Related Works
2.1. Aspect-Based Sentiment Analysis
2.2. Graph Convolutional Network
2.3. Considering External Knowledge
2.4. Limitations
3. Methodology
3.1. Problem Description
3.2. Embedding Based on BERT
Dynamic Weighting Mechanism
Algorithm 1 Dynamic weighting mechanism |
|
3.3. BiLSTM Layer
3.4. Detailed Description of the Heterogeneous Graph
3.5. Graph Convolutional Networks
3.6. Aspect-Specific Mask
3.7. Affective Knowledge Graph
3.8. Attention Layer
3.8.1. Multi-Headed Attention
3.8.2. Aspect-Aware Attention Mechanism
3.9. Feature Fusion
3.10. Sentiment Classification
4. Experiments
4.1. Datasets and Experimental Details
4.2. Evaluation Metrics
4.3. Baseline
- MemNet [50] employs a multi-hop architecture, context processing, and external memory.
- AOA [51]: Adapts the attention-over-attention technique from machine translation to the realm of ABSA.
- IAN [52]: Constructs representations for aspects and contexts independently after interactively learning attentions in aspects and contexts.
- ASGCN [14]: Applies a GCN to sentence dependency trees to take advantage of syntactic information.
- AEGCN [53]: Utilizes an improved GCN that combines phrase dependency trees with multi-head attention.
- SK-GCN [19]: Utilizes a mixed syntax and external knowledge model that successfully integrates external knowledge with syntax information.
- AHGCN [16]: Employs a new GCN-based model using heterogeneous graphs.
- ADHGCN [18]: Utilizes a new heterogeneous graph construction method, which adds post-pruning on top of the traditional construction method.
- Sentic LSTM [54]: Employs a common-sense knowledge solution for directed sentiment analysis of aspect words.
- Sentic-GCN [39]: Incorporates SenticNet into a model that makes full use of syntactic relationships and sentiment common sense to enhance dependency trees.
- DM + GCN + BERT [55]: Performs dynamic and multi-channel GCN modeling of syntactic and semantic information in sentences.
- SGGCN + BERT [56]: Alters the graph-based model’s hidden vectors to make the most of information from the aspects.
- AIEN + BERT [57]: Constructs an interaction encoder using a GCN and attention mechanisms for extracting interaction features.
- KHGCN: Utilizes a dynamic weighting mechanism to acquire word-level embeddings during the encoding phase. It employs BiLSTM, an HGCN, and affective space to obtain semantic, syntactic, and external sentiment features, respectively. Additionally, it utilizes an attentional mechanism to extract features for sentiment prediction.
4.4. Performance Comparison
4.5. Ablation Study
4.6. Parameter Experiment
4.7. Complexity Analysis
4.8. Discussion
4.9. Case Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Wang, S.; Liu, B. Deep learning for sentiment analysis: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1253. [Google Scholar] [CrossRef]
- Schouten, K.; Frasincar, F. Survey on aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. 2015, 28, 813–830. [Google Scholar] [CrossRef]
- Arya, B.; Bassi, B.; Phiyega, R. Transformation charters in contemporary South Africa: The case of the ABSA group limited. Bus. Soc. Rev. 2008, 113, 227–251. [Google Scholar] [CrossRef]
- Majumder, N.; Poria, S.; Gelbukh, A.; Akhtar, M.; Cambria, E.; Ekbal, A. AIARM: Inter-aspect relation modeling with memory networks in aspect-based sentiment analysis. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 3402–3411. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Gandhi, H.; Attar, V. Extracting aspect terms using CRF and bi-LSTM models. Procedia Comput. Sci. 2020, 167, 2486–2495. [Google Scholar] [CrossRef]
- Yang, J.; Yang, J. Aspect based sentiment analysis with self-attention and gated convolutional networks. In Proceedings of the 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 16–18 October 2020; pp. 146–149. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; p. 30. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Hoang, M.; Bihorac, O.; Rouces, J. Aspect-based sentiment analysis using bert. In Proceedings of the 22nd Nordic Conference on Computational Linguistics, Turku, Finland, 30 September–2 October 2019; pp. 187–196. [Google Scholar]
- Zhu, X.; Zhu, Y.; Zhang, L.; Chen, Y. A BERT-based multi-semantic learning model with aspect-aware enhancement for aspect polarity classification. Appl. Intell. 2023, 53, 4609–4623. [Google Scholar] [CrossRef]
- Li, X.; Fu, X.; Xu, G.; Yang, Y.; Wang, J.; Jin, L.; Liu, Q.; Xiang, T. Enhancing BERT representation with context-aware embedding for aspect-based sentiment analysis. IEEE Access 2020, 8, 46868–46876. [Google Scholar] [CrossRef]
- Park, H.; Shin, K. Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models. J. Intell. Inf. Syst. 2020, 26, 1–25. [Google Scholar]
- Zhang, C.; Li, Q.; Song, D. Aspect-based sentiment classification with aspect-specific graph convolutional networks. arXiv 2019, arXiv:1909.03477. [Google Scholar]
- Hou, X.; Qi, P.; Wang, G.; Ying, R.; Huang, J.; He, X.; Zhou, B. Graph ensemble learning over multiple dependency trees for aspect-level sentiment classification. arXiv 2021, arXiv:2103.11794. [Google Scholar]
- Xu, K.; Zhao, H.; Liu, T. Aspect-specific heterogeneous graph convolutional network for aspect-based sentiment classification. IEEE Access 2020, 8, 139346–139355. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, Z.; Chen, Z.; Ma, H. Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network. Front. Comput. Sci. 2023, 17, 176340. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, C.; Pan, H.; Wang, Y.; Xu, Y. Aspect-Dependent Heterogeneous Graph Convolutional Network for Aspect-Level Sentiment Analysis. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [Google Scholar]
- Zhou, J.; Huang, J.; Hu, Q.; He, L. Sk-gcn: Modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification. Knowl.-Based Syst. 2020, 205, 106292. [Google Scholar] [CrossRef]
- Zhao, A.; Yu, Y. Knowledge-enabled BERT for aspect-based sentiment analysis. Knowl.-Based Syst. 2021, 227, 107220. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Q.; Qian, H.; Xiang, B.; Cui, Q.; Zhou, J.; Chen, E. Eatn: An efficient adaptive transfer network for aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. 2021, 35, 377–389. [Google Scholar] [CrossRef]
- Xue, W.; Li, T. Aspect based sentiment analysis with gated convolutional networks. arXiv 2018, arXiv:1805.07043. [Google Scholar]
- He, R.; Lee, W.; Ng, H.; Dahlmeier, D. Exploiting document knowledge for aspect-level sentiment classification. arXiv 2018, arXiv:1806.04346. [Google Scholar]
- Zhu, Z.; Zhang, D.; Li, L.; Li, K.; Qi, J.; Wang, W.; Zhang, G.; Liu, P. Knowledge-guided multi-granularity GCN for ABSA. Inf. Process. Manag. 2023, 60, 103223. [Google Scholar] [CrossRef]
- Zhao, Z.; Tang, M.; Tang, W.; Wang, C.; Chen, X. Graph convolutional network with multiple weight mechanisms for aspect-based sentiment analysis. Neurocomputing 2022, 500, 124–134. [Google Scholar] [CrossRef]
- Huang, B.; Carley, K. Syntax-aware aspect level sentiment classification with graph attention networks. arXiv 2019, arXiv:1909.02606. [Google Scholar]
- Sun, K.; Zhang, R.; Mensah, S.; Mao, Y.; Liu, X. Aspect-Level Sentiment Analysis Via Convolution over Dependency Tree. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 5679–5688. [Google Scholar]
- Pan, Y.; Li, D.; Dai, Z.; Cui, P. Aspect-Based Sentiment Analysis Using Dual Probability Graph Convolutional Networks (DP-GCN) Integrating Multi-scale Information. In Proceedings of the International Conference on Neural Information Processing, Changsha, China, 20–23 November 2023; Springer: Singapore, 2023; pp. 495–512. [Google Scholar]
- Zhang, Z.; Zhou, Z.; Wang, Y. SSEGCN: Syntactic and Semantic Enhanced Graph Convolutional Network for Aspect-based Sentiment Analysis. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 2022, Seattle, WA, USA, 10–15 July 2022; pp. 4916–4925. [Google Scholar]
- Zhang, C.; Song, D.; Huang, C.; Swami, A.; Chawla, N. Heterogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 793–803. [Google Scholar]
- Wang, X.; Chai, Y.; Li, H.; Wu, D. Link prediction in heterogeneous information networks: An improved deep graph convolution approach. Decis. Support Syst. 2021, 141, 113448. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Shi, C.; Hu, B.; Song, G.; Ye, Y. Heterogeneous Graph Structure Learning for Graph Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; pp. 4697–4705. [Google Scholar]
- Qin, H.; Han, X.; Ma, X.; Yan, W. Personalized literature recommendation based on heterogeneous entity academic network. J. King Saud-Univ.-Comput. Inf. Sci. 2023, 35, 101649. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, X.; Liu, Z.; Jiang, X.; Sun, M.; Liu, Q. ERNIE: Enhanced language representation with informative entities. arXiv 2019, arXiv:1905.07129. [Google Scholar]
- Liu, W.; Zhou, P.; Zhao, Z.; Wang, Z.; Ju, Q.; Deng, H.; Wang, P. K-BERT: Enabling Language Representation with Knowledge Graph. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 2901–2908. [Google Scholar]
- Xing, Y.; Shi, Z.; Meng, Z.; Lakemeyer, G.; Ma, Y.; Wattenhofer, R. Km-bart: Knowledge enhanced multimodal bart for visual commonsense generation. arXiv 2021, arXiv:2101.00419. [Google Scholar]
- Cambria, E.; Liu, Q.; Decherchi, S.; Xing, F.; Kwok, K. SenticNet 7: A commonsense-based neurosymbolic AI framework for explainable sentiment analysis. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, Marseille, France, 20–25 June 2022; pp. 3829–3839. [Google Scholar]
- Xing, F.; Pallucchini, F.; Cambria, E. Cognitive-inspired domain adaptation of sentiment lexicons. Inf. Process. Manag. 2019, 56, 554–564. [Google Scholar] [CrossRef]
- Liang, B.; Su, H.; Gui, L.; Cambria, E.; Xu, R. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowl.-Based Syst. 2022, 235, 107643. [Google Scholar] [CrossRef]
- Xu, J.; Yang, S.; Xiao, L.; Fu, Z.; Wu, X.; Ma, T.; He, L. Graph Convolution over the Semantic-syntactic Hybrid Graph Enhanced by Affective Knowledge for Aspect-level Sentiment Classification. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [Google Scholar]
- Xu, H.; Shu, L.; Yu, P.; Liu, B. Understanding pre-trained bert for aspect-based sentiment analysis. arXiv 2020, arXiv:2011.00169. [Google Scholar]
- Wu, Z.; Ong, D. Context-guided bert for targeted aspect-based sentiment analysis. In Proceedings of the AAAI Conference on Artificial Intelligence 2021, Virtually, 2–9 February 2021; pp. 14094–14102. [Google Scholar]
- Kipf, T.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Yao, L.; Mao, C.; Luo, Y. Graph convolutional networks for text classification. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 7370–7377. [Google Scholar]
- Zhong, Q.; Ding, L.; Liu, J.; Du, B.; Jin, H.; Tao, D. Knowledge graph augmented network towards multiview representation learning for aspect-based sentiment analysis. IEEE Trans. Knowl. Data Eng. 2023, 35, 10098–10111. [Google Scholar] [CrossRef]
- Manandhar, S. Semeval-2014 task 4: Aspect based sentiment analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, 23–24 August 2014. [Google Scholar]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Manandhar, S.; Androutsopoulos, I. Semeval-2015 task 12: Aspect based sentiment analysis. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, CO, USA, 4–5 June 2015; pp. 486–495. [Google Scholar]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S.; Al-Smadi, M.; Al-Ayyoub, M.; Zhao, Y.; Qin, B.; De Clercq, O.; et al. Semeval-2016 task 5: Aspect based sentiment analysis. In Proceedings of the International Workshop on Semantic Evaluation, San Diego, CA, USA, 16–17 June 2016; pp. 19–30. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Tang, D.; Qin, B.; Liu, T. Aspect level sentiment classification with deep memory network. arXiv 2016, arXiv:1605.08900. [Google Scholar]
- Huang, B.; Ou, Y.; Carley, K.M. Aspect level sentiment classification with attention-over-attention neural networks. In Proceedings of the Social, Cultural, and Behavioral Modeling: 11th International Conference, Washington, DC, USA, 10–13 July 2018; pp. 197–206. [Google Scholar]
- Ma, D.; Li, S.; Zhang, X.; Wang, H. Interactive attention networks for aspect-level sentiment classification. arXiv 2017, arXiv:1709.00893. [Google Scholar]
- Xiao, L.; Hu, X.; Chen, Y.; Xue, Y.; Gu, D.; Chen, B.; Zhang, T. Targeted sentiment classification based on attentional encoding and graph convolutional networks. Appl. Sci. 2020, 10, 957. [Google Scholar] [CrossRef]
- Ma, Y.; Peng, H.; Khan, T.; Cambria, E.; Hussain, A. Sentic LSTM: A hybrid network for targeted aspect-based sentiment analysis. Cogn. Comput. 2018, 10, 639–650. [Google Scholar] [CrossRef]
- Pang, S.; Xue, Y.; Yan, Z.; Huang, W.; Feng, J. Dynamic and multichannel graph convolutional networks for aspect-based sentiment analysis. In Proceedings of the ACM Conference Findings Association for Computational Linguistics Joint Conference Natural Language Processing, Online, 1–6 August 2021; pp. 2627–2636. [Google Scholar]
- Veyseh, A.; Nour, N.; Dernoncourt, F.; Tran, Q.; Dou, D.; Nguyen, T. Improving aspect-based sentiment analysis with gated graph convolutional networks and syntax-based regulation. arXiv 2020, arXiv:2010.13389. [Google Scholar]
- Yang, B.; Li, H.; Teng, S.; Sun, Y.; Xing, Y. Attentional Interactive Encoder Network Focused on Aspect for Sentiment Classification. Electronics 2023, 12, 1329. [Google Scholar] [CrossRef]
Dataset | Positive | Neutral | Negative | Total | |
---|---|---|---|---|---|
Lap14 | Train | 994 | 464 | 870 | 2328 |
Test | 341 | 169 | 128 | 638 | |
Rest15 | Train | 912 | 36 | 256 | 1204 |
Test | 326 | 34 | 182 | 542 | |
Rest16 | Train | 1240 | 69 | 439 | 1748 |
Test | 469 | 30 | 117 | 616 |
Length | 0–10 | 10–20 | 20–30 | 30–40 | 40–50 | ≥50 | |
---|---|---|---|---|---|---|---|
Lap14 | Train | 233 | 901 | 676 | 322 | 116 | 80 |
Test | 109 | 316 | 135 | 38 | 27 | 13 | |
Rest15 | Train | 248 | 583 | 260 | 75 | 26 | 12 |
Test | 121 | 228 | 111 | 45 | 29 | 8 | |
Rest16 | Train | 372 | 811 | 370 | 120 | 55 | 20 |
Test | 134 | 274 | 107 | 54 | 16 | 31 |
Model | Lap14 (%) | Rest15 (%) | Rest16 (%) | |||
---|---|---|---|---|---|---|
Acc. | Macro-F1 | Acc. | Macro-F1 | Acc. | Macro-F1 | |
MemNet [50] | 70.64 | 65.17 | 77.31 | 58.28 | 85.44 | 65.99 |
AOA [51] | 72.62 | 67.52 | 78.17 | 57.02 | 87.5 | 66.21 |
IAN [52] | 72.05 | 67.38 | 78.54 | 52.65 | 84.74 | 55.21 |
ASGCN [14] | 74.14 | 69.24 | 79.34 | 60.78 | 88.69 | 66.64 |
AEGCN [53] | 75.91 | 71.63 | 79.95 | 60.879 | 87.39 | 68.22 |
SK-GCN [19] | 73.20 | 69.18 | 80.12 | 60.70 | 85.17 | 68.08 |
AHGCN [16] | 76.80 | 73.00 | 79.94 | 62.79 | 88.53 | 72.18 |
ADHGCN [18] | 78.52 | 76.21 | 85.16 | 63.77 | 88.53 | 71.94 |
Sentic-LSTM [54] | 70.88 | 67.19 | 79.55 | 60.56 | 83.01 | 68.22 |
Sentic-GCN [39] | 77.90 | 74.71 | 82.84 | 67.32 | 90.88 | 75.91 |
BERT [9] | 77.59 | 73.28 | 83.48 | 66.18 | 90.10 | 74.16 |
DM + GCN + BERT [55] | 80.22 | 77.28 | N/A | N/A | N/A | N/A |
SK-GCN + BERT [19] | 79.00 | 75.57 | 83.20 | 66.78 | 87.19 | 72.02 |
SGGCN + BERT [56] | 82.80 | 80.20 | 82.72 | 65.86 | 90.52 | 74.53 |
AIEN + BERT [57] | 78.21 | 73.39 | 83.58 | 64.67 | 90.58 | 74.49 |
KHGCN | 80.87 | 77.90 | 85.42 | 68.90 | 91.07 | 74.65 |
Model | Lap14 (%) | Rest15 (%) | Rest16 (%) | |||
---|---|---|---|---|---|---|
Acc. | Macro-F1 | Acc. | Macro-F1 | Acc. | Macro-F1 | |
KHGCN w/o DWM | 80.09 | 76.93 | 85.23 | 67.72 | 90.75 | 73.93 |
KHGCN w/o | 79.31 | 75.78 | 84.69 | 65.20 | 90.42 | 72.14 |
KHGCN w/o | 80.25 | 76.84 | 84.31 | 65.80 | 90.09 | 71.75 |
KHGCN w/o | 80.25 | 76.90 | 85.24 | 66.96 | 90.42 | 73.45 |
KHGCN | 80.87 | 77.90 | 85.42 | 68.90 | 91.07 | 74.65 |
k | Lap14 (%) | Rest15 (%) | Rest16 (%) | ||||
---|---|---|---|---|---|---|---|
Acc. | Macro-F1 | Acc. | Macro-F1 | Acc. | Macro-F1 | ||
0.2 | 0.3 | 80.56 | 77.62 | 85.24 | 68.98 | 90.91 | 74.51 |
0.4 | 80.41 | 77.57 | 85.06 | 68.43 | 90.75 | 74.24 | |
0.5 | 80.41 | 77.03 | 84.87 | 67.03 | 90.26 | 74.05 | |
0.6 | 80.72 | 77.77 | 84.87 | 69.19 | 90.56 | 73.58 | |
0.3 | 0.3 | 80.87 | 77.90 | 85.05 | 67.72 | 91.07 | 74.65 |
0.4 | 80.40 | 77.74 | 85.42 | 68.90 | 90.26 | 74.09 | |
0.5 | 80.56 | 77.15 | 85.23 | 65.14 | 91.07 | 73.66 | |
0.6 | 80.25 | 77.04 | 85.06 | 69.08 | 90.58 | 72.30 |
Model | Params | Dataset | Time/s |
---|---|---|---|
AHGCN | 44.09 M | Lap14 | 197.37 |
Rest15 | 169.61 | ||
Rest16 | 321.98 | ||
Sentic-GCN | 44.09 M | Lap14 | 274.78 |
Rest15 | 204.82 | ||
Rest16 | 264.57 | ||
AIEN + BERT | 132.36 M | Lap14 | 212.21 |
Rest15 | 133.93 | ||
Rest16 | 215.92 | ||
KHGCN | 103.16 M | Lap14 | 227.04 |
Rest15 | 273.08 | ||
Rest16 | 205.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Ling, G.; Tu, W.; Chen, Y. Knowledge-Guided Heterogeneous Graph Convolutional Network for Aspect-Based Sentiment Analysis. Electronics 2024, 13, 517. https://doi.org/10.3390/electronics13030517
Song X, Ling G, Tu W, Chen Y. Knowledge-Guided Heterogeneous Graph Convolutional Network for Aspect-Based Sentiment Analysis. Electronics. 2024; 13(3):517. https://doi.org/10.3390/electronics13030517
Chicago/Turabian StyleSong, Xiangxiang, Guang Ling, Wenhui Tu, and Yu Chen. 2024. "Knowledge-Guided Heterogeneous Graph Convolutional Network for Aspect-Based Sentiment Analysis" Electronics 13, no. 3: 517. https://doi.org/10.3390/electronics13030517
APA StyleSong, X., Ling, G., Tu, W., & Chen, Y. (2024). Knowledge-Guided Heterogeneous Graph Convolutional Network for Aspect-Based Sentiment Analysis. Electronics, 13(3), 517. https://doi.org/10.3390/electronics13030517