Hybrid Beamforming Structure Using Grouping with Reduced Number of Phase Shifters in Multi-User MISO
Abstract
:1. Introduction
2. System Model
3. Conventional and Proposed Methods
3.1. HBF Structure of the Conventional Method
3.2. HBF Structure of the Proposed Method
3.3. Grouping of Users and Transmitting Antennas in the Proposed Method
4. Comparison
4.1. Simulation Parameters
4.2. Performance Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive mimo for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef]
- Marzetta, T.L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Patel, D.N.; Makwana, B.J.; Parmar, P.B. Comparative analysis of adaptive beamforming algorithm LMS, SMI and RLS for ULA smart antenna. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2016; pp. 1029–1033. [Google Scholar] [CrossRef]
- Chiu, L.-K.; Wu, S.-H. Hybrid radio frequency beamforming and baseband precoding for downlink MU-MIMO mmWave channels. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 1346–1351. [Google Scholar] [CrossRef]
- Singh, A.; Joshi, S. A survey on hybrid beamforming in mmwave massive mimo system. J. Sci. Res. 2021, 65, 201–213. [Google Scholar] [CrossRef]
- Jing, X.; Li, L.; Liu, H.; Li, S. Dynamically connected hybrid precoding scheme for millimeter-wave massive mimo systems. IEEE Commun. Lett. 2018, 22, 2583–2586. [Google Scholar] [CrossRef]
- Wiesel, A.; Eldar, Y.C.; Shamai, S. Zero-forcing precoding and generalized inverses. IEEE Trans. Signal Process. 2008, 56, 4409–4418. [Google Scholar] [CrossRef]
- Rihan, M.; Soliman, T.A.; Xu, C.; Huang, L.; Dessouky, M.I. Taxonomy and performance evaluation of hybrid beamforming for 5g and beyond systems. IEEE Access 2020, 8, 74605–74626. [Google Scholar] [CrossRef]
- Kim, M.; Lee, J.; Lee, J. Hybrid beamforming for multi-user transmission in millimeter wave communications. In Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 18–20 October 2017; pp. 1260–1262. [Google Scholar] [CrossRef]
- Ren, W.; Deng, J.; Cheng, X. MMSE Hybrid Beamforming for Multi-User Millimeter Wave MIMO Systems. IEEE Commun. Lett. 2023, 27, 3389–3393. [Google Scholar] [CrossRef]
- Kudathanthirige, D.; Amarasuriya, G. Sum Rate Analysis of Massive MIMO Downlink with Hybrid Beamforming. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Elbir, A.M.; Vijay Mishra, K. Low-Complexity Limited-Feedback Deep Hybrid Beamforming for Broadband Massive MIMO. In Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Abose, T.A.; Olwal, T.O.; Hassen, M.R. Hybrid Beamforming for Millimeter Wave Massive MIMO under Hardware Impairments and Imperfect Channel State Information. In Proceedings of the 2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkur, Karnataka, India, 3–4 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Stuber, G.L.; Barry, J.R.; McLaughlin, S.W.; Ye, L.; Ingram, M.A.; Pratt, T.G. Broadband MIMO-OFDM wireless communications. Proc. IEEE 2004, 92, 271–294. [Google Scholar] [CrossRef]
- Song, L.; Han, S.; Yang, C. Wideband hybrid precoder for massive MIMO systems. In Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 14–16 December 2015; pp. 305–309. [Google Scholar] [CrossRef]
- Ahmed, I.; Khammari, H.; Shahid, A.; Musa, A.; Kim, K.S.; De Poorter, E.; Moerman, I. A survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 3060–3097. [Google Scholar] [CrossRef]
- Wan, S.; Zhu, H.; Kang, K.; Qian, H. On the performance of fully-connected and sub-connected hybrid beamforming system. IEEE Trans. Veh. Technol. 2021, 70, 11078–11082. [Google Scholar] [CrossRef]
- Younis, M.; Huber, S.; Patyuchenko, A.; Bordoni, F.; Krieger, G. Performance comparison of reflector-and planar-antenna based digital beam-forming sar. Int. J. Antennas Propag. 2009. [Google Scholar] [CrossRef]
- Hall, P.; Vetterlein, S. Review of radio frequency beamforming techniques for scanned and multiple beam antennas. IEE Proc. H Microwaves Antennas Propag. 1990, 137, 293–303. [Google Scholar] [CrossRef]
- Miyamoto, K.; Nishibe, K.; Shibakura, T.; Tamura, K.; Cho, J.; Cho, S.; Cha, J.; Ahn, C.-J. Analysis of MRT precoding massive MIMO for railway and maritime terminal in multi-cell environment. J. Electr. Eng. Technol. 2024, 3, 1–6. [Google Scholar] [CrossRef]
- Li, H.; Song, L.; Debbah, M. Energy efficiency of large-scale multiple antenna systems with transmit antenna selection. IEEE Trans. Commun. 2014, 62, 638–647. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Number of BS antennas | 4 |
Number of users | 4 |
Number of antennas per users | 1 |
Channel model | Rayleigh flat fading |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayakawa, H.; Handa, Y.; Tanaka, R.; Tamura, K.; Cha, J.; Ahn, C.-J. Hybrid Beamforming Structure Using Grouping with Reduced Number of Phase Shifters in Multi-User MISO. Electronics 2024, 13, 3994. https://doi.org/10.3390/electronics13203994
Hayakawa H, Handa Y, Tanaka R, Tamura K, Cha J, Ahn C-J. Hybrid Beamforming Structure Using Grouping with Reduced Number of Phase Shifters in Multi-User MISO. Electronics. 2024; 13(20):3994. https://doi.org/10.3390/electronics13203994
Chicago/Turabian StyleHayakawa, Hiroya, Yudai Handa, Riku Tanaka, Kosuke Tamura, Jaesang Cha, and Chang-Jun Ahn. 2024. "Hybrid Beamforming Structure Using Grouping with Reduced Number of Phase Shifters in Multi-User MISO" Electronics 13, no. 20: 3994. https://doi.org/10.3390/electronics13203994
APA StyleHayakawa, H., Handa, Y., Tanaka, R., Tamura, K., Cha, J., & Ahn, C.-J. (2024). Hybrid Beamforming Structure Using Grouping with Reduced Number of Phase Shifters in Multi-User MISO. Electronics, 13(20), 3994. https://doi.org/10.3390/electronics13203994