Labeling-Based Recipient Identification with Low-Order Modulation
Abstract
:1. Introduction
1.1. LABRID at a Glance
1.2. LABRID in Comparison with Other Techniques
1.3. Research Problem Formulation
1.4. Paper Structure
1.5. Notations
2. LABRID for BICM-ID with Multidimensional Labeling
2.1. System Model
2.1.1. Calculation of Edge Transition Cost
2.1.2. Calculation of State Metrics in the Forward Trellis Pass
2.1.3. Calculation of State Metrics in the Backward Trellis Pass
2.1.4. Generation of LLRs
2.2. Frame Filtering
- is high enough,
- the demapper labeling map is identical to the map used at the transmitter [4].
3. Optimal Hypercube Labeling Set
3.1. Error-Free Feedback BER Bound
3.2. Properties of Optimal Hypercube Labeling
3.3. Search for the Optimal Hypercube Labeling
4. Illustrative Results
4.1. Overall System Performance
- The simulation BER curves meet the EF bounds, which proves the accuracy of simulation setup and scripts. Moreover, it shows that LABRID is transparent for the overall system performance.
- The position of the turbo cliff for the case of the 10,000 data frame size and QPSK modulation corresponds to its non-LABRID QPSK hypercube BICM-ID reference (Figure 2 in [12]; note the difference in the number of iterations performed and the frame size). It is another proof that LABRID does not deteriorate the overall system performance.
- As expected, the turbo cliff for the longer data frame appears at a lower and is steeper than for the setup with the shorter data frame.
- Particularly for the shorter data frame, there is no real benefit in running as many as 30 decoding iterations (20 are fully enough).
- The EF bound for BPSK hypercube labeling runs significantly lower than for QPSK hypercube labeling and diverges with increasing . It is clear evidence of better asymptotic performance of the former. It agrees with the conclusion ending Section 3.2.
4.2. EXIT Chart Analysis
4.3. Efficacy of Frame Filtering
4.4. Desired Threshold Value
4.5. Cost Comparison
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chindapol, A.; Ritcey, J.A. Design, analysis, and performance evaluation for BICM-ID with square QAM constellations in Rayleigh fading channels. IEEE J. Sel. Areas Commun. 2001, 19, 944–957. [Google Scholar] [CrossRef]
- Caire, G.; Taricco, G.; Biglieri, E. Bit-interleaved coded modulation. IEEE Trans. Inf. Theory 1998, 44, 927–946. [Google Scholar] [CrossRef]
- Zehavi, E. 8-PSK trellis codes for a Rayleigh channel. IEEE Trans. Commun. 1992, 40, 873–884. [Google Scholar] [CrossRef]
- Krasicki, M. Labeling-Based Recipient Identification for 16-QAM BICM-ID. EURASIP J. Wirel. Commun. Netw. 2019, 179. [Google Scholar] [CrossRef]
- Krasicki, M. BICM-ID Labeling-Based Recipient Identification in a Heterogeneous Network. Sensors 2023, 23, 3605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, D.; Wang, Y. A New Constellation Shaping Method and Its Performance Evaluation in BICM-ID. In Proceedings of the 2009 IEEE 70th Vehicular Technology Conference Fall (VTC 2009-Fall), Anchorage, AK, USA, 20–23 September 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Khoo, B.K.; Le Goff, S.; Sharif, B.; Tsimenidis, C. Bit-interleaved coded modulation with iterative decoding using constellation shaping. IEEE Trans. Commun. 2006, 54, 1517–1520. [Google Scholar] [CrossRef]
- Basar, E.; Wen, M.; Mesleh, R.; Renzo, M.D.; Xiao, Y.; Haas, H. Index Modulation Techniques for Next-Generation Wireless Networks. IEEE Access 2017, 5, 16693–16746. [Google Scholar] [CrossRef]
- Xu, C.; Xiong, Y.; Ishikawa, N.; Rajashekar, R.; Sugiura, S.; Wang, Z.; Ng, S.X.; Yang, L.L.; Hanzo, L. Space-, Time- and Frequency-Domain Index Modulation for Next-Generation Wireless: A Unified Single-/Multi-Carrier and Single-/Multi-RF MIMO Framework. IEEE Trans. Wirel. Commun. 2021, 20, 3847–3864. [Google Scholar] [CrossRef]
- Krasicki, M. Labeling-Based Recipient Identification for BICM-ID in 64-QAM case. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1135–1139. [Google Scholar] [CrossRef]
- Li, X.; Ritcey, J. Trellis-coded modulation with bit interleaving and iterative decoding. IEEE J. Sel. Areas Commun. 1999, 17, 715–724. [Google Scholar] [CrossRef]
- Tran, N.; Nguyen, H. Improving the performance of QPSK BICM-ID by mapping on the hypercube. In Proceedings of the IEEE 60th Vehicular Technology Conference, VTC2004-Fall, Los Angeles, CA, USA, 26–29 September 2004; Volume 2, pp. 1299–1303. [Google Scholar] [CrossRef]
- Tran, N.; Nguyen, H. Design and performance of BICM-ID systems with hypercube constellations. IEEE Trans. Wirel. Commun. 2006, 5, 1169–1179. [Google Scholar] [CrossRef]
- Simoens, F.; Wymeersch, H.; Bruneel, H.; Moeneclaey, M. Multidimensional mapping for bit-interleaved coded modulation with BPSK/QPSK signaling. IEEE Commun. Lett. 2005, 9, 453–455. [Google Scholar] [CrossRef]
- ten Brink, S. Convergence of iterative decoding. Electron. Lett. 1999, 35, 1117–1119. [Google Scholar] [CrossRef]
- Hagenauer, J. The EXIT Chart-Introduction to Extrinsic Information Transfer. In Proceedings of the 12th European Signal Processing Conference (EUSIPCO), Vienna, Austria, 6–10 September 2004; pp. 1541–1548. [Google Scholar]
- Benedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F. A Soft-Input Soft-Output maximum a posteriori (MAP) module to decode parallel and serial concatenated codes. TDA Prog. Rep. 1996, 42, 1–20. [Google Scholar]
- Robertson, P.; Villebrun, E.; Hoeher, P. A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. In Proceedings of the IEEE International Conference on Communications ICC’95, Seattle, WA, USA, 18–22 June 1995; Volume 2, pp. 1009–1013. [Google Scholar] [CrossRef]
- Land, I.; Hoeher, P.; Gligorevic, S. Computation of symbol-wise mutual information in transmission systems with LogAPP decoders and application to EXIT charts. In Proceedings of the International ITG Conference on Source and Channel Coding, Erlangen, Germany, 14–16 January 2004; pp. 195–202. [Google Scholar]
- Biglieri, E.; Caire, G.; Taricco, G.; Ventura-Traveset, J. Computing error probabilities over fading channels: A unified approach. Eur. Trans. Telecommun. 1998, 9, 15–25. [Google Scholar] [CrossRef]
- Benedetto, S.; Biglieri, E. Principles of Digital Transmission with Wireless Applications; Kluwer Academic Publishers: New York, NY, USA, 1999. [Google Scholar]
- Schreckenbach, F.; Gortz, N.; Hagenauer, J.; Bauch, G. Optimized symbol mappings for Bit-Interleaved Coded Modulation with Iterative Decoding. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM’03), San Francisco, CA, USA, 1–5 December 2003; Volume 6, pp. 3316–3320. [Google Scholar] [CrossRef]
- Battiti, R.; Tecchiolli, G. The reactive tabu search. ORSA J. Comput. 1994, 6, 126–140. [Google Scholar] [CrossRef]
- Biglieri, E.; Caire, G.; Taricco, G.; Ventura-Traveset, J. Simple method for evaluating error probabilities. Electron. Lett. 1996, 32, 191–192. [Google Scholar] [CrossRef]
1 | 11 | 13 | 13 | 8 | 8 | 8 | 8 | 8 | |
6 | 6 | 6 | 3 | 3 | 15 | 5 | 3 | 15 | |
8 | 8 | 8 | 8 | 13 | 1 | 11 | 13 | 1 | |
15 | 5 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | |
13 | 13 | 11 | 14 | 14 | 2 | 2 | 4 | 4 | |
10 | 0 | 0 | 0 | 5 | 5 | 15 | 15 | 3 | |
4 | 14 | 14 | 11 | 11 | 11 | 1 | 1 | 13 | |
3 | 3 | 5 | 5 | 0 | 12 | 12 | 10 | 10 | |
11 | 1 | 1 | 4 | 4 | 4 | 14 | 14 | 2 | |
12 | 12 | 10 | 10 | 15 | 3 | 3 | 5 | 5 | |
2 | 2 | 4 | 1 | 1 | 13 | 13 | 11 | 11 | |
5 | 15 | 15 | 15 | 10 | 10 | 0 | 0 | 12 | |
7 | 7 | 7 | 7 | 2 | 14 | 4 | 2 | 14 | |
0 | 10 | 12 | 9 | 9 | 9 | 9 | 9 | 9 | |
14 | 4 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | |
9 | 9 | 9 | 12 | 12 | 0 | 10 | 12 | 0 |
(0000) | (0001) | (0010) | (0011) | (0100) | (0101) | (0110) | (0111) | (1000) | (1001) | (1010) | (1011) | (1100) | (1101) | (1110) | (1111) | ||||
identifier | |||||||||||||||||||
0 | (0000) | 12 | 12 | 12 | 16 | ||||||||||||||
1 | (0001) | 12 | 12 | 12 | 16 | ||||||||||||||
2 | (0010) | 12 | 12 | 12 | 16 | ||||||||||||||
3 | (0011) | 12 | 12 | 12 | 16 | ||||||||||||||
4 | (0100) | 12 | 12 | 12 | 16 | ||||||||||||||
5 | (0101) | 12 | 12 | 12 | 16 | ||||||||||||||
6 | (0110) | 12 | 12 | 12 | 16 | ||||||||||||||
7 | (0111) | 12 | 12 | 12 | 16 | ||||||||||||||
8 | (1000) | 16 | 12 | 12 | 12 | ||||||||||||||
9 | (1001) | 16 | 12 | 12 | 12 | ||||||||||||||
10 | (1010) | 16 | 12 | 12 | 12 | ||||||||||||||
11 | (1011) | 16 | 12 | 12 | 12 | ||||||||||||||
12 | (1100) | 16 | 12 | 12 | 12 | ||||||||||||||
13 | (1101) | 16 | 12 | 12 | 12 | ||||||||||||||
14 | (1110) | 16 | 12 | 12 | 12 | ||||||||||||||
15 | (1111) | 16 | 12 | 12 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasicki, M. Labeling-Based Recipient Identification with Low-Order Modulation. Electronics 2024, 13, 425. https://doi.org/10.3390/electronics13020425
Krasicki M. Labeling-Based Recipient Identification with Low-Order Modulation. Electronics. 2024; 13(2):425. https://doi.org/10.3390/electronics13020425
Chicago/Turabian StyleKrasicki, Maciej. 2024. "Labeling-Based Recipient Identification with Low-Order Modulation" Electronics 13, no. 2: 425. https://doi.org/10.3390/electronics13020425
APA StyleKrasicki, M. (2024). Labeling-Based Recipient Identification with Low-Order Modulation. Electronics, 13(2), 425. https://doi.org/10.3390/electronics13020425