A Study on Machine Learning-Enhanced Roadside Unit-Based Detection of Abnormal Driving in Autonomous Vehicles
Abstract
:1. Introduction
2. Related Works
3. Background about Machine Learning
3.1. Supervised Learning
3.2. Unsupervised Learning
4. Abnormal Vehicle’s BSM with Simulation Tool, CANoePro
5. Detection Abnormal Vehicle with Machine Learning
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, D.; Tu, S.Z.; Whalin, R.W.; Zhang, L. Adaptive Individual-Level Cognitive Driving Anomaly Detection Model Exclusively Using BSMs. Vehicles 2023, 5, 1275–1293. [Google Scholar] [CrossRef]
- Ranaweera, M.; Seneviratne, A.; Rey, D.; Saberi, M.; Dixit, V.V. Detection of anomalous vehicles using physics of traffic. Veh. Commun. 2021, 27, 100304. [Google Scholar] [CrossRef]
- Zamouche, D.; Aissani, S.; Omar, M.; Mohammedi, M. Highly efficient approach for discordant BSMs detection in connected vehicles environment. Wirel. Netw. 2023, 29, 189–207. [Google Scholar] [CrossRef]
- Yang, Z.; Ying, J.; Shen, J.; Feng, Y.; Chen, Q.A.; Mao, Z.M.; Liu, H.X. Anomaly Detection Against GPS Spoofing Attacks on Connected and Autonomous Vehicles Using Learning From Demonstration. IEEE Trans. Intell. Transp. Syst. 2023, 24, 9462–9475. [Google Scholar] [CrossRef]
- Humayun, M.; Ashfaq, F.; Jhanjhi, N.Z.; Alsadun, M.K. Traffic management: Multi-scale vehicle detection in varying weather conditions using yolov4 and spatial pyramid pooling network. Electronics 2022, 11, 2748. [Google Scholar]
- Farid, A.; Hussain, F.; Khan, K.; Shahzad, M.; Khan, U.; Mahmood, Z. A Fast and Accurate Real-Time Vehicle Detection Method Using Deep Learning for Unconstrained Environments. Appl. Sci. 2023, 13, 3059. [Google Scholar] [CrossRef]
- Guo, D.; Wang, Y.; Zhu, S.; Li, X. A Vehicle Detection Method Based on an Improved U-YOLO Network for High-Resolution Remote-Sensing Images. Sustainability 2023, 15, 10397. [Google Scholar] [CrossRef]
- Soe, M.T.; Min, A.Z.; Kyaw, H.T.; Paing, M.M.; Htet, S.M.; Aye, B. Abnormal Behavior Detection in Real-time for Advanced Driver Assistance System (ADAS) using YOLO. In Proceedings of the 2022 IEEE Symposium on Industrial Electronics & Applications (ISIEA), Langkawi Island, Malaysia, 16–17 July 2022; pp. 1–6. [Google Scholar]
- Sankaranarayanan, M.; Aggarwal, M.; Mala, C. Semi-automatic Vehicle Detection System for Road Traffic Management. In Proceedings of the 3rd International Conference on Artificial Intelligence: Advances and Applications: ICAIAA 2022; Springer Nature Singapore: Singapore, 2023; pp. 303–314. [Google Scholar]
- Vu, L.; Nguyen, Q.U.; Nguyen, D.N.; Hoang, D.T.; Dutkiewicz, E. Learning latent representation for IoT anomaly detection. IEEE Trans. Cybern. 2020, 52, 3769–3782. [Google Scholar] [CrossRef]
- Ryan, C.; Murphy, F.; Mullins, M. End-to-end autonomous driving risk analysis: A behavioural anomaly detection approach. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1650–1662. [Google Scholar] [CrossRef]
- Alladi, T.; Gera, B.; Agrawal, A.; Chamola, V.; Yu, F.R. DeepADV: A deep neural network framework for anomaly detection in VANETs. IEEE Trans. Veh. Technol. 2021, 70, 12013–12023. [Google Scholar] [CrossRef]
- Bifulco, G.N.; Coppola, A.; Petrillo, A.; Santini, S. Decentralized Cooperative Crossing at Unsignalized Intersections via Vehicle-to-Vehicle Communication in Mixed Traffic Flows. J. Intell. Transp. Syst. 2022, 1–26. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, H.; Smart, E.; Yu, H. Real-time Performance-focused Localization Techniques for Autonomous Vehicle: A Review. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6082–6100. [Google Scholar] [CrossRef]
- Chakraborty, R.; Kumar, S.; Awasthi, A.; Suneetha, K.; Rastogi, A.; Jethava, G. Machine Learning Based Novel Frameworks Developments and Architectures for Secured Communication in VANETs for Smart Transportation. Soft Comput. 2023, 1–11. [Google Scholar] [CrossRef]
- Nusinovici, S.; Tham, Y.C.; Yan, M.Y.C.; Ting, D.S.W.; Li, J.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.-Y. Logistic regression was as good as machine learning for predicting major chronic diseases. J. Clin. Epidemiol. 2020, 122, 56–69. [Google Scholar] [CrossRef]
- Bhushan, S.; Alshehri, M.; Keshta, I.; Chakraverti, A.K.; Rajpurohit, J.; Abugabah, A. An experimental analysis of various machine learning algorithms for hand gesture recognition. Electronics 2022, 11, 968. [Google Scholar] [CrossRef]
- Alzahrani, R.J.; Alzahrani, A. Security analysis of ddos attacks using machine learning algorithms in networks traffic. Electronics 2021, 10, 2919. [Google Scholar] [CrossRef]
- Gupta, C.; Johri, I.; Srinivasan, K.; Hu, Y.-C.; Qaisar, S.M.; Huang, K.-Y. A systematic review on machine learning and deep learning models for electronic information security in mobile networks. Sensors 2022, 22, 2017. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Doh, I.-J.; Bae, E. Design and validation of a portable machine learning-based electronic nose. Sensors 2021, 21, 3923. [Google Scholar] [CrossRef]
- Khalid, M.J.; Irfan, M.; Ali, T.; Gull, M.; Draz, U.; Glowacz, A.; Sulowicz, M.; Dziechciarz, A.; AlKahtani, F.S.; Hussain, S. Integration of discrete wavelet transform, DBSCAN, and classifiers for efficient content based image retrieval. Electronics 2020, 9, 1886. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Thomson, B.; Debnath, R.; Motayed, A.; Rao, M.V. Nanowire-based sensor array for detection of cross-sensitive gases using PCA and machine learning algorithms. IEEE Sens. J. 2020, 20, 6020–6028. [Google Scholar] [CrossRef]
- Waskle, S.; Parashar, L.; Singh, U. Intrusion detection system using PCA with random forest approach. In Proceedings of the 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2–4 July 2020; pp. 803–808. [Google Scholar]
- Bukhari, S.N.H.; Webber, J.; Mehbodniya, A. Decision tree based ensemble machine learning model for the prediction of Zika virus T-cell epitopes as potential vaccine candidates. Sci. Rep. 2022, 12, 7810. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Frederick, D.A.; Lledo, E.E.; Rosenfield, N.; Berardi, V.; Linstead, E.; Maoz, U. Examining the utility of nonlinear machine learning approaches versus linear regression for predicting body image outcomes: The US Body Project I. Body Image 2022, 41, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Baturynska, I.; Martinsen, K. Prediction of geometry deviations in additive manufactured parts: Comparison of linear regression with machine learning algorithms. J. Intell. Manuf. 2021, 32, 179–200. [Google Scholar] [CrossRef]
- García-Nieto, P.J.; García-Gonzalo, E.; Paredes-Sánchez, J.P. Prediction of the critical temperature of a superconductor by using the WOA/MARS, Ridge, Lasso and Elastic-net machine learning techniques. Neural Comput. Appl. 2021, 33, 17131–17145. [Google Scholar] [CrossRef]
- Chen, D.-L.; Cai, J.-H.; Wang, C.C. Identification of key prognostic genes of triple negative breast cancer by LASSO-based machine learning and bioinformatics analysis. Genes 2022, 13, 902. [Google Scholar] [CrossRef]
- Johnsen, T.K.; Gao, J.Z. Elastic net to forecast COVID-19 cases. In Proceedings of the 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT), Sakheer, Bahrain, 20–21 December 2020; pp. 1–6. [Google Scholar]
- Zhang, Y.; Dai, Y.; Wu, Q. An accelerated optimization algorithm for the elastic-net extreme learning machine. Int. J. Mach. Learn. Cybern. 2022, 13, 3993–4011. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Batth, R.S. Software reuse analytics using integrated random forest and gradient boosting machine learning algorithm. Softw. Pract. Exp. 2021, 51, 735–747. [Google Scholar] [CrossRef]
- Shrivastav, L.K.; Jha, S.K. A gradient boosting machine learning approach in modeling the impact of temperature and humidity on the transmission rate of COVID-19 in India. Appl. Intell. 2021, 51, 2727–2739. [Google Scholar] [CrossRef]
- Ileberi, E.; Sun, Y.; Wang, Z. Performance evaluation of machine learning methods for credit card fraud detection using SMOTE and AdaBoost. IEEE Access 2021, 9, 165286–165294. [Google Scholar] [CrossRef]
- Chen, S.; Shen, B.; Wang, X.; Yoo, S.-J. A strong machine learning classifier and decision stumps based hybrid adaboost classification algorithm for cognitive radios. Sensors 2019, 19, 5077. [Google Scholar] [CrossRef]
- Lieskovská, E.; Jakubec, M.; Jarina, R.; Chmulík, M. A review on speech emotion recognition using deep learning and attention mechanism. Electronics 2021, 10, 1163. [Google Scholar] [CrossRef]
- Atik, I. Classification of electronic components based on convolutional neural network Architecture. Energies 2022, 15, 2347. [Google Scholar] [CrossRef]
- Chien, J.-C.; Wu, M.-T.; Lee, J.-D. Inspection and classification of semiconductor wafer surface defects using CNN deep learning networks. Appl. Sci. 2020, 10, 5340. [Google Scholar] [CrossRef]
- Bisen, D.; Lilhore, U.K.; Manoharan, P.; Dahan, F.; Mzoughi, O.; Hajjej, F.; Saurabh, P.; Raahemifar, K. A Hybrid Deep Learning Model Using CNN and K-Mean Clustering for Energy Efficient Modelling in Mobile EdgeIoT. Electronics 2023, 12, 1384. [Google Scholar] [CrossRef]
- Zou, Y.; Lv, J. Using recurrent neural network to optimize electronic nose system with dimensionality reduction. Electronics 2020, 9, 2205. [Google Scholar] [CrossRef]
- Xiong, J.; Yu, D.; Liu, S.; Shu, L.; Wang, X.; Liu, Z. A review of plant phenotypic image recognition technology based on deep learning. Electronics 2021, 10, 81. [Google Scholar] [CrossRef]
- Awad, F.H.; Hamad, M.M. Improved k-means clustering algorithm for big data based on distributed smartphoneneural engine processor. Electronics 2022, 11, 883. [Google Scholar] [CrossRef]
- Laskar, M.T.R.; Huang, J.X.; Smetana, V.; Stewart, C.; Pouw, K.; An, A.; Chan, S.; Liu, L. Extending isolation forest for anomaly detection in big data via K-means. ACM Trans. Cyber-Phys. Syst. TCPS 2021, 5, 1–26. [Google Scholar] [CrossRef]
- Ullah, B.; Kamran, M.; Rui, Y. Predictive modeling of short-term rockburst for the stability of subsurface structures using machine learning approaches: T-SNE, K-Means clustering and XGBoost. Mathematics 2022, 10, 449. [Google Scholar] [CrossRef]
- Hozumi, Y.; Wang, R.; Yin, C.; Wei, G.-W. UMAP-assisted K-means clustering of large-scale SARS-CoV-2 mutation datasets. Comput. Biol. Med. 2021, 131, 104264. [Google Scholar] [CrossRef]
- Benbrahim Ansari, O. Geo-marketing segmentation with deep learning. Businesses 2021, 1, 51–71. [Google Scholar] [CrossRef]
- Morales, F.; García-Torres, M.; Velázquez, G.; Daumas-Ladouce, F.; Gardel-Sotomayor, P.E.; Gómez-Vela, F.; Divina, F.; Vázquez Noguera, J.L.; Sauer Ayala, C.; Pinto-Roa, D.P. Analysis of electric energy consumption profiles using a machine learning approach: A Paraguayan case study. Electronics 2022, 11, 267. [Google Scholar] [CrossRef]
- Jasiński, M.; Sikorski, T.; Leonowicz, Z.; Borkowski, K.; Jasińska, E. The application of hierarchical clustering to power quality measurements in an electrical power network with distributed generation. Energies 2020, 13, 2407. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, B. Construction of Personalized Bus Travel Time Prediction Intervals Based on Hierarchical Clustering and the Bootstrap Method. Electronics 2023, 12, 1917. [Google Scholar] [CrossRef]
- Ahmadi, M.; Taghavirashidizadeh, A.; Javaheri, D.; Masoumian, A.; Ghoushchi, S.J.; Pourasad, Y. DQRE-SCnet: A novel hybrid approach for selecting users in federated learning with deep-Q-reinforcement learning based on spectral clustering. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 7445–7458. [Google Scholar] [CrossRef]
- Berahmand, K.; Mohammadi, M.; Faroughi, A.; Mohammadiani, R.P. A novel method of spectral clustering in attributed networks by constructing parameter-free affinity matrix. Clust. Comput. 2022, 1–20. [Google Scholar] [CrossRef]
- Janani, R.; Vijayarani, S. Text document clustering using spectral clustering algorithm with particle swarm optimization. Expert Syst. Appl. 2019, 134, 192–200. [Google Scholar] [CrossRef]
- Binbusayyis, A.; Vaiyapuri, T. Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM. Appl. Intell. 2021, 51, 7094–7108. [Google Scholar] [CrossRef]
- Wang, Z.; Cha, Y.-J. Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage. Struct. Health Monit. 2021, 20, 406–425. [Google Scholar] [CrossRef]
- Ahmed, S.; Lee, Y.; Hyun, S.-H.; Koo, I. Unsupervised machine learning-based detection of covert data integrity assault in smart grid networks utilizing isolation forest. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2765–2777. [Google Scholar] [CrossRef]
- You, L.; Peng, Q.; Xiong, Z.; He, D.; Qiu, M.; Zhang, X. Integrating aspect analysis and local outlier factor for intelligent review spam detection. Future Gener. Comput. Syst. 2020, 102, 163–172. [Google Scholar] [CrossRef]
- Alghushairy, O.; Alsini, R.; Soule, T.; Ma, X. A review of local outlier factor algorithms for outlier detection in big data streams. Big Data Cogn. Comput. 2020, 5, 1. [Google Scholar] [CrossRef]
- Grollemund, V.; Chat, G.L.; Secchi-Buhour, M.-S.; Delbot, F.; Pradat-Peyre, J.-F.; Bede, P.; Pradat, P.-F. Development and validation of a 1-year survival prognosis estimation model for Amyotrophic Lateral Sclerosis using manifold learning algorithm UMAP. Sci. Rep. 2020, 10, 13378. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.J.; Seo, J.; Seid, M.G.; Lee, J.; Ejerssa, W.W.; Lee, D.-H.; Jeong, E.; Chae, S.H.; Lee, Y.; Son, M. Clustering micropollutants and estimating rate constants of sorption and biodegradation using machine learning approaches. Npj Clean Water 2023, 6, 69. [Google Scholar] [CrossRef]
- Wang, C. Efficient customer segmentation in digital marketing using deep learning with swarm intelligence approach. Inf. Process. Manag. 2022, 59, 103085. [Google Scholar] [CrossRef]
- Sornalakshmi, M.; Balamurali, S.; Venkatesulu, M.; Navaneetha Krishnan, M.; Ramasamy, L.K.; Kadry, S.; Manogaran, G.; Hsu, C.-H.; Muthu, B.A. Hybrid method for mining rules based on enhanced Apriori algorithm with sequential minimal optimization in healthcare industry. Neural Comput. Appl. 2020, 34, 10597–10610. [Google Scholar] [CrossRef]
- Mohapatra, D.; Tripathy, J.; Mohanty, K.K.; Nayak, D.S.K. Interpretation of optimized hyper parameters in associative rule learning using eclat and apriori. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; pp. 879–882. [Google Scholar]
- Rozi, F.; Sukmana, F. Unsupervised Machine Learning Using Fp-Growth in Service and Maintenance of Asset Management. Int. J. Artif. Intell. Res. 2022, 6. [Google Scholar] [CrossRef]
- Shawkat, M.; Badawi, M.; El-ghamrawy, S.; Arnous, R.; El-desoky, A. An optimized FP-growth algorithm for discovery of association rules. J. Supercomput. 2022, 78, 5479–5506. [Google Scholar] [CrossRef]
- Bo, D.; Wang, X.; Shi, C.; Zhu, M.; Lu, E.; Cui, P. Structural deep clustering network. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 1400–1410. [Google Scholar]
- Peng, X.; Zhu, H.; Feng, J.; Shen, C.; Zhang, H.; Zhou, J.T. Deep clustering with sample-assignment invariance prior. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 4857–4868. [Google Scholar] [CrossRef]
- Di Mattia, F.; Galeone, P.; De Simoni, M.; Ghelfi, E. A survey on gans for anomaly detection. arXiv Preprint 2019, arXiv:1906.11632. [Google Scholar]
- Dong, H.; Dong, H.; Ding, Z.; Zhang, S. Deep Reinforcement Learning; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-981-15-4094-3. [Google Scholar]
- Wang, H.-N.; Liu, N.; Zhang, Y.-Y.; Feng, D.-W.; Huang, F.; Li, D.-S.; Zhang, Y.-M. Deep reinforcement learning: A survey. Front. Inf. Technol. Electron. Eng. 2020, 21, 1726–1744. [Google Scholar] [CrossRef]
- Vector. CANoe. Available online: https://www.vector.com/kr/ko/products/products-a-z/software/canoe (accessed on 13 December 2023).
- SAE International. J2735_202309: V2X Communications Message Set Dictionary, SAE International, 2023. Available online: https://www.sae.org/standards/content/j2735_202309/ (accessed on 13 December 2023).
- Jaemyeong, K.; Yunsoo, C.; Hasu, Y.; Wonjong, L. Optimal Space Interpolation Method for Continuous Marine Vertical Datum Based on WGS-84 Ellipsoid. Sens. Mater. 2019, 31, 3917–3930. [Google Scholar] [CrossRef]
Learning Method | Learning Algorithm | Advantages | Disadvantages |
---|---|---|---|
Classification | Logistic Regression, SVM, Decision Trees, Naive Bayes | 1. Effective for categorical outputs 2. Wide range of applications 3. Well-established algorithms | 1. Overfitting risk 2. Requires fine-tuning 3. Varying performance on imbalanced data |
Regression | Linear Regression, Ridge, Lasso, ElasticNet | 1. Effective for continuous outputs 2. Simple to understand and implement 3. Basis for more advanced techniques | 1. Sensitive to outliers 2. Overfitting risk 3. Limited to linear relationships |
Ensemble Methods | Random Forest, Gradient Boosting, AdaBoost | 1. Improved accuracy 2. Reduced variance 3. Combines strengths of individual models | 1. More complex to tune 2. Increased computational cost 3. Risk of overfitting with noisy data |
Recent Advancements | Deep Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks | 1. High performance on complex tasks 2. Ability to model non-linear relationships 3. Effective in handling large-scale data | 1. Requires significant computational resources 2. Prone to overfitting 3. Requires large amounts of training data |
Learning Method | Learning Algorithm | Advantages | Disadvantages |
---|---|---|---|
Clustering | k-means, DBSCAN, Hierarchical Clustering, Spectral Clustering | 1. Simplicity 2. Widespread use 3. Variety for needs | 1. Spherical cluster assumption 2. Scale sensitivity 3. Complexity struggle |
Abnormal Detection | One-class SVM, Isolation Forest, Local Outlier Factor | 1. High-dimensional space effectiveness 2. Suitability for anomaly types | 1. Complex anomaly missing 2. Parameter sensitivity |
Dimensionality Reduction | PCA, t-SNE, Autoencoders, UMAP, MiniSom | 1. Data complexity reduction 2. Visualization facilitation 3. Non-linear relationship capture | 1. Computational intensity 2. Dimension selection necessity |
Association Rule Learning | Apriori, Eclat, FP-Growth | 1. Relation discovery 2. Efficiency in large datasets 3. Suitability for itemset sizes | 1. Rule quantity 2. Noise and outlier sensitivity 3. Parameter tuning requirement |
Recent Advancements | Deep Clustering, GANs for Anomaly Detection, Deep Reinforcement Learning | 1. Deep learning leverage 2. Adaptability to complex patterns 3. Suitability for large-scale and dynamic data | 1. Large data requirement 2. Computational intensity 3. Complex implementation |
Message Parameter | Message Type | Data Frame | Data Element |
---|---|---|---|
packet_time | BSM Part 1 | ||
Mac_address | |||
Message_count | MsgCount | ||
BSM_lat | Latitude | ||
BSM_lon | Longitude | ||
BSM_elev | Elevation | ||
BSM_accuraacy_semiMajor | PositionalAccuracy | semiMajorAxisAccuracy | |
BSM_accuraacy_semiMinor | semiMinorAxisAccuracy | ||
BSM_accuraacy_orientation | SemiMajorAxisOrientation | ||
BSM_speed(m/s) | speed | ||
BSM_heading | Heading | ||
BSM_angle | SteeringWheelAngle | ||
BSM_accelset_lat | AccelerationSet4Way | Acceleration | |
BSM_accelset_lon | Acceleration | ||
BSM_accelset_vert | VerticalAcceleration | ||
BSM_accelset_yaw | YawRate | ||
BSM_breakes_WheelBrakes | BrakeSystemStatus | BrakeAppliedStatus | |
BSM_breakes_traction | TractionContralStatus | ||
BSM_breakes_antiLockBreakes | AntiLockBrakeStatus | ||
BSM_breakes_scs | StabilityControlStatus | ||
BSM_breakes_breakBoost | BrakeBoostApplied | ||
BSM_breakes_auxBrakes | AuxiliaryBrakeStatus | ||
BSM_size_width | VehicleSize | VehicleWidth | |
BSM_size_length | VehicleLength | ||
Event_message | BSM Part 2 | VehicleSafetyExtensions | eventHazardLights eventStopLineViolation eventABSactivated eventTractionControlLoss eventStabilityControlactivated eventHazardousMaterials eventReserved1 eventHardBraking eventLightsChanged eventWipersChanged eventFlatTire eventDisabledVehicle eventAirBagDeployment linePosition |
Algorithm | Oneclass-SVM | K-Means | HDBSCAN | Minisom | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abnormal | Accuracy | Recall | Precision | Accuracy | Recall | Precision | Accuracy | Recall | Precision | Accuracy | Recall | Precision |
Sensor problem | 47.9 | 47.7 | 44.2 | 50 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 |
Overlap | 51.5 | 23.1 | 19.5 | 66.7 | 0 | 0 | 65 | 40.3 | 10.1 | 66.7 | 50 | 93.8 |
Counterflow | 51.5 | 33.7 | 47.1 | 100 | 100 | 100 | 41 | 36.1 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, K.; Yun, H.; Lee, S.; Oh, J.; Kim, M.; Lim, M.; Lee, J.; Kim, C.; Seo, J.; Choi, J. A Study on Machine Learning-Enhanced Roadside Unit-Based Detection of Abnormal Driving in Autonomous Vehicles. Electronics 2024, 13, 288. https://doi.org/10.3390/electronics13020288
Yun K, Yun H, Lee S, Oh J, Kim M, Lim M, Lee J, Kim C, Seo J, Choi J. A Study on Machine Learning-Enhanced Roadside Unit-Based Detection of Abnormal Driving in Autonomous Vehicles. Electronics. 2024; 13(2):288. https://doi.org/10.3390/electronics13020288
Chicago/Turabian StyleYun, Keon, Heesun Yun, Sangmin Lee, Jinhyeok Oh, Minchul Kim, Myongcheol Lim, Juntaek Lee, Chanmin Kim, Jiwon Seo, and Jinyoung Choi. 2024. "A Study on Machine Learning-Enhanced Roadside Unit-Based Detection of Abnormal Driving in Autonomous Vehicles" Electronics 13, no. 2: 288. https://doi.org/10.3390/electronics13020288
APA StyleYun, K., Yun, H., Lee, S., Oh, J., Kim, M., Lim, M., Lee, J., Kim, C., Seo, J., & Choi, J. (2024). A Study on Machine Learning-Enhanced Roadside Unit-Based Detection of Abnormal Driving in Autonomous Vehicles. Electronics, 13(2), 288. https://doi.org/10.3390/electronics13020288