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Abstract: Ensuring the safety of autonomous vehicles is becoming increasingly important with
ongoing technological advancements. In this paper, we suggest a machine learning-based approach
for detecting and responding to various abnormal behaviors within the V2X system, a system
that mirrors real-world road conditions. Our system, including the RSU, is designed to identify
vehicles exhibiting abnormal driving. Abnormal driving can arise from various causes, such as
communication delays, sensor errors, navigation system malfunctions, environmental challenges,
and cybersecurity threats. We simulated exploring three primary scenarios of abnormal driving:
sensor errors, overlapping vehicles, and counterflow driving. The applicability of machine learning
algorithms for detecting these anomalies was evaluated. The Minisom algorithm, in particular,
demonstrated high accuracy, recall, and precision in identifying sensor errors, vehicle overlaps, and
counterflow situations. Notably, changes in the vehicle’s direction and its characteristics proved to be
significant indicators in the Basic Safety Messages (BSM). We propose adding a new element called
linePosition to BSM Part 2, enhancing our ability to promptly detect and address vehicle abnormalities.
This addition underpins the technical capabilities of RSU systems equipped with edge computing,
enabling real-time analysis of vehicle data and appropriate responsive measures. In this paper, we
emphasize the effectiveness of machine learning in identifying and responding to the abnormal
behavior of autonomous vehicles, offering new ways to enhance vehicle safety and facilitate smoother
road traffic flow.

Keywords: autonomous vehicle; roadside unit; abnormal driving; machine learning

1. Introduction

Autonomous vehicles represent an innovative technology that operates without direct
human intervention, autonomously navigating and ensuring safe passage to destinations.
This innovation significantly enhances the safety and efficiency of transportation systems,
offering substantial societal benefits, including the reduction of traffic accidents. As con-
cerns about autonomous vehicles increase, advancing this technology becomes paramount.
In response to these developments, our research is focused on advancing autonomous driv-
ing technologies. This includes exploring the transition from WAVE/LTE to 5G for faster
communication, enhancing the processing capabilities of edge computing, and delving into
specific aspects of security like cybersecurity and data protection.

In this paper, we simulate complex and diverse scenarios that autonomous vehicles
may encounter in real road environments in real time and analyze these scenarios through
a machine learning algorithm designed to detect vehicle abnormalities. Figure 1 illustrates
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the use of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications.
These methods, along with other vehicle-related communications, are collectively referred
to as vehicle-to-everything (V2X). The On-Board Diagnostics (OBD) and On-Board Units
(OBU) function as communication tools within the vehicle. The Basic Safety Messages
(BSM), generated by the vehicle, are transmitted through these tools. BSMs carry critical
data about the vehicle’s dynamic state and other essential safety details, playing a pivotal
role in facilitating effective communication between vehicles and between vehicles and
infrastructure. This cooperation, enabled by the BSMs, allows for rapid response during
driving. The V2I system exchanges data with vehicles through devices such as WAVE/LTE
modems and edge computers installed in the infrastructure.

However, as autonomous vehicles gain prominence, it is equally important to acknowl-
edge and address the underlying issues that emerge in their wake. In particular, failures
in autonomous vehicle systems can lead to significant safety risks, potentially resulting in
serious accidents and endangering human lives. A variety of issues threaten safe driving,
including communication problems including communication delays, sensor errors, OBD
and OBU failures, navigator errors, software and hardware malfunctions, power system
issues, engine and mechanical failures, environmental factors, and cybersecurity concerns.
These problems can directly affect not only the safety of the vehicle but also the lives of
drivers and others. We discuss three abnormal behaviors due to these factors: (1) sensor
problems, (2) overlap, and (3) reverse driving.

Accordingly, we are researching an abnormal behavior detection system based on
machine learning. Research using machine learning identifies problems in the abnormal
vehicle and provides immediate help from the outside through RSU. This research is
important because it can ensure the safety of passengers and improve the safety and
reliability of autonomous vehicles by monitoring abnormal driving vehicles and taking
necessary measures.

This paper is organized as follows: Section 2 introduces related works and Section 3
describes the background of machine learning. In Section 4, we simulate three abnormal
behaviors such as sensor problems, overlap, and reverse driving, and in Section 5, we
experiment with a method of detecting abnormal behavior using machine learning based
on BSM, which is the simulation result in Section 4. Finally, Section 6 is the conclusion of
this paper.
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2. Related Works

Advances in sensors and driving algorithms for autonomous vehicles emphasize the
importance of anomaly detection to ensure passenger safety and data reliability. Research
on anomaly detection is broadly divided into two main approaches. The first is a data-
centric approach based on the vehicle’s sensor data, and the second is a method that utilizes
images captured by external cameras.

The data-centric approach utilizes data generated inside the vehicle to detect abnor-
malities for self-recovery or transmits this data to the outside to determine whether an
abnormality exists in an external system [1–4]. Image-based approaches identify vehicles
through image-processing technology and detect abnormal behavior based on this [5–9].
In this paper, image-based approaches were excluded because it is difficult to process
image data on edge computers. This decision is due to the processing power and re-
source limitations of edge computers. Our goal is to detect abnormal behavior through the
communication of data generated within the vehicle with the RSU.

Generally, data-based anomaly detection uses a rule-based method. However, it is
difficult for these systems to respond quickly and flexibly to the complex and dynamic
environment of autonomous vehicles. Because it is close-to-impossible to define in advance
all abnormal situations that may occur in the real environment, real-time response is
difficult. In contrast, machine learning-based approaches have the potential to make
decisions and respond in real time, similar to humans. Vu et al. [10] proposed a method to
detect abnormal conditions using machine learning in an IoT environment. This method
utilizes unsupervised learning in an IoT environment where various data are generally
unlabeled and mixed. Ryan et al. [11] proposed a methodology to evaluate the risks of
autonomous vehicles. In this research, normal driving patterns were modeled using CNN,
and the operational risk of autonomous vehicles was quantified by applying a GP-based
anomaly detection method. Alladi et al. [12] proposed a DNN-based anomaly detection
framework to detect unknown abnormalities in VANETs.

In addition to these approaches, recent research has expanded the understanding of
vehicle communication and machine learning in traffic systems. Bifulco et al. [13] investi-
gate decentralized cooperative crossing at unsignalized intersections, demonstrating the
effectiveness of vehicle-to-vehicle communication in mixed traffic flows. This research
provides valuable insights into the role of communication technologies in improving
traffic management and safety. Lu et al. [14] offer a comprehensive review of real-time
performance-focused localization techniques for autonomous vehicles. Their work high-
lights the importance of precision in localization methods and their impact on the safety
and efficiency of autonomous driving. Furthermore, Chakraborty et al. [15] explore the
development of novel machine learning frameworks for secure communication in Vehicle
Ad hoc Networks (VANETs), emphasizing the role of machine learning in enhancing the
security and efficiency of smart transportation systems.

3. Background about Machine Learning

Machine learning is the research of computer algorithms that automatically improve
through experience. Based on input data, human intervention is minimized. Data patterns
are derived and prediction models are created. As big data technology develops, it becomes
easier to collect large amounts of diverse learning data, accelerating the development of
machine learning technology. These advances in machine learning technology enable the
recognition and prediction of patterns in large amounts of data and complex environments
that are difficult for humans to process.

Machine learning consists of a learning stage and a prediction stage. In the learning
stage, a model is created by training the algorithm with data, and in the prediction stage,
the data is applied to the model created to predict the result. Figure 2 shows the machine
learning process.

Machine learning is classified into Supervised Learning and Unsupervised Learning
depending on the learning method. These are described in detail in the subsection.
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3.1. Supervised Learning

Supervised learning is a method of learning of a model using labeled training data.
Because this method has high prediction accuracy and applies to a variety of real-world
problems, it is widely used in both research and practical applications. Supervised learning
algorithms can be divided into classification and regression, and each algorithm has its
strengths and weaknesses.

There are various algorithms in supervised learning, as shown in Table 1. Machine
learning algorithms each have their own advantages and disadvantages, and understanding
these is essential for choosing an appropriate algorithm. Classification algorithms, such as
logistic regression [16–18], support vector machines (SVM) [18–23], decision trees [18,19,24],
and Naive Bayes [17–19,23], are effective for categorical results and are used in a variety of
applications. However, they have a risk of overfitting, their performance may vary on imbal-
anced data, and require fine-tuning. Regression algorithms, such as linear regression [25,26],
Ridge [27], Lasso [27,28], and ElasticNet [27,29,30], are effective in predicting continuous
outcomes and are easy to understand and simple to implement. However, they are sensitive
to outliers, risk overfitting, and are limited to linear relationships. Ensemble methodolo-
gies, such as Random Forest [17–19,31], Gradient Boosting [31,32], and Adaboost [33,34],
combine the strengths of individual models to improve accuracy and reduce volatility.
However, they are more complicated to tune, more computationally expensive, and have a
risk of overfitting in noisy data. Recently developed deep neural networks [19,35], convo-
lutional neural networks [17,36–38], and recurrent neural networks [19,39,40] show high
performance in complex tasks, can model nonlinear relationships, and effectively process
large-scale data. However, they require significant computational resources, are susceptible
to overfitting, and require large amounts of training data.

Table 1. Advantages and disadvantages of supervised learning algorithms.

Learning Method Learning Algorithm Advantages Disadvantages

Classification
Logistic Regression, SVM,
Decision Trees, Naive
Bayes

1. Effective for categorical outputs
2. Wide range of applications
3. Well-established algorithms

1. Overfitting risk
2. Requires fine-tuning
3. Varying performance on imbalanced data

Regression Linear Regression, Ridge,
Lasso, ElasticNet

1. Effective for continuous outputs
2. Simple to understand and implement
3. Basis for more advanced techniques

1. Sensitive to outliers
2. Overfitting risk
3. Limited to linear relationships

Ensemble
Methods

Random Forest, Gradient
Boosting, AdaBoost

1. Improved accuracy
2. Reduced variance
3. Combines strengths of individual models

1. More complex to tune
2. Increased computational cost
3. Risk of overfitting with noisy data

Recent
Advancements

Deep Neural Networks,
Convolutional Neural
Networks, Recurrent
Neural Networks

1. High performance on complex tasks
2. Ability to model non-linear relationships
3. Effective in handling large-scale data

1. Requires significant computational resources
2. Prone to overfitting
3. Requires large amounts of training data
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3.2. Unsupervised Learning

Unsupervised Learning is a machine learning method that performs learning based on
unlabeled data. Unlike Supervised Learning, it has no or limited labels, so it is mainly used
to group similar data or detect outliers by learning the structure of the data. Unsupervised
learning methods can be seen using various methods for grouping, as shown in Figure 3.
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Table 2 shows the advantages or disadvantages of unsupervised learning algorithms.
Clustering algorithms consist of k-means [19,31–45], DBSCAN [21], hierarchical cluster-
ing [46–48], and spectral clustering [49–51], and provide a simple structure, widely used
methodology, and diversity according to various needs. However, they have disadvantages,
such as spherical cluster assumption, sensitivity to scale, and difficulty processing complex
data structures. Anomaly detection algorithms include One-class SVM [52,53], Isolation
Forest [42,54], and Local Outlier Factor [55,56], which demonstrate effective operation in
high-dimensional spaces and suitability for various anomaly types. However, they have the
disadvantage of missing complex outliers and being sensitive to parameters. Dimensional-
ity reduction algorithms include PCA [22,23], t-SNE [43], Autoencoders [19], UMAP [44,57],
and MiniSom [45,58,59], which provide advantages such as reduced data complexity, ease
of visualization, and capturing nonlinear relationships. However, they have disadvan-
tages such as high computational intensity and the need to select appropriate dimensions.
Association rule learning includes Apriori [60,61], Eclat [61], and FP-Growth [62,63], and
provide relationship discovery, efficiency in large-scale datasets, and suitability for itemset
size. They have disadvantages such as the amount of rules, sensitivity to noise and outliers,
and the need for parameter tuning. In recent development trends, deep clustering [64,65],
anomaly detection using GANs [66], and deep reinforcement learning [19,67,68] are at-
tracting attention. These algorithms provide the advantages of utilizing deep learning,
adaptability to complex patterns, and suitability for large-scale and dynamic data, but
have disadvantages such as large data requirements, computational intensity, and complex
implementation.

In this way, identifying the advantages and disadvantages of each unsupervised learn-
ing algorithm is an important criterion for selecting and applying an effective algorithm.
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Table 2. Advantages and disadvantages of unsupervised learning algorithms.

Learning Method Learning Algorithm Advantages Disadvantages

Clustering k-means, DBSCAN, Hierarchical
Clustering, Spectral Clustering

1. Simplicity
2. Widespread use
3. Variety for needs

1. Spherical cluster assumption
2. Scale sensitivity
3. Complexity struggle

Abnormal Detection One-class SVM, Isolation Forest,
Local Outlier Factor

1. High-dimensional space effectiveness
2. Suitability for anomaly types

1. Complex anomaly missing
2. Parameter sensitivity

Dimensionality
Reduction

PCA, t-SNE, Autoencoders,
UMAP, MiniSom

1. Data complexity reduction
2. Visualization facilitation
3. Non-linear relationship capture

1. Computational intensity
2. Dimension selection necessity

Association Rule
Learning Apriori, Eclat, FP-Growth

1. Relation discovery
2. Efficiency in large datasets
3. Suitability for itemset sizes

1. Rule quantity
2. Noise and outlier sensitivity
3. Parameter tuning requirement

Recent
Advancements

Deep Clustering, GANs for
Anomaly Detection, Deep
Reinforcement Learning

1. Deep learning leverage
2. Adaptability to complex patterns
3. Suitability for large-scale and dynamic data

1. Large data requirement
2. Computational intensity
3. Complex implementation

4. Abnormal Vehicle’s BSM with Simulation Tool, CANoePro

The experimental environment configuration is shown in Figure 4 and is designed for
the simulation of vehicle communication systems. The experimental setup consisted of a
high-performance desktop computer, CANoePro S/W (CANoe 15.4.35) and H/W [69], and
an edge computing device for data processing and analysis in the RSU enclosure. On a
desktop computer, it is designed using CANoePro, which simulates V2V and V2I. Using
this computer, vehicle communication protocols are created and tested in various road and
traffic scenarios. In this experiment, the message format of the vehicle communication
protocol is defined as shown in Table 3, and real-time data transmission and reception are
experimented with. Edge computing devices play a central role in RSU and are used to
process large amounts of data generated from vehicles. Additionally, the device provides
network connectivity to support real-time processing and analysis of vehicle data, enabling
complex decision-making processes.

In vehicle communication systems, BSM provides information about the dynamic
state of the vehicle, which is essential to ensuring road safety. As shown in Table 3, each
BSM contains various data elements used for effective communication in V2V and/or V2I,
which are defined by the J2735 standard [70].
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Table 3. J2735 Message frame [70].

Message Parameter Message Type Data Frame Data Element

packet_time

BSM Part 1

Mac_address

Message_count MsgCount

BSM_lat Latitude

BSM_lon Longitude

BSM_elev Elevation

BSM_accuraacy_semiMajor

PositionalAccuracy

semiMajorAxisAccuracy

BSM_accuraacy_semiMinor semiMinorAxisAccuracy

BSM_accuraacy_orientation SemiMajorAxisOrientation

BSM_speed(m/s) speed

BSM_heading Heading

BSM_angle SteeringWheelAngle

BSM_accelset_lat

AccelerationSet4Way

Acceleration

BSM_accelset_lon Acceleration

BSM_accelset_vert VerticalAcceleration

BSM_accelset_yaw YawRate

BSM_breakes_WheelBrakes

BrakeSystemStatus

BrakeAppliedStatus

BSM_breakes_traction TractionContralStatus

BSM_breakes_antiLockBreakes AntiLockBrakeStatus

BSM_breakes_scs StabilityControlStatus

BSM_breakes_breakBoost BrakeBoostApplied

BSM_breakes_auxBrakes AuxiliaryBrakeStatus

BSM_size_width
VehicleSize

VehicleWidth

BSM_size_length VehicleLength

Event_message BSM Part 2 VehicleSafetyExtensions

eventHazardLights
eventStopLineViolation

eventABSactivated
eventTractionControlLoss

eventStabilityControlactivated
eventHazardousMaterials

eventReserved1
eventHardBraking

eventLightsChanged
eventWipersChanged

eventFlatTire
eventDisabledVehicle

eventAirBagDeployment
linePosition

The Packet_time property included in BSM Part 1 indicates the exact time when the
message was transmitted. Mac_address is used to uniquely identify the vehicle. Mes-
sage_count assigns sequential numbers to messages within the message stream to prevent
data loss and/or duplication. Geographic location is expressed in 1/10 micro-degree units
through latitude and longitude through BSM_lat and BSM_lon, and BSM_elev represents
altitude based on the WGS-84 [71] ellipsoid. Position accuracy is further provided by prop-
erties such as BSM_accuracy_semiMajor and BSM_accuracy_semiMinor, which provide
the margin of error for position along the vehicle’s major and minor axes, respectively.
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BSM_speed and BSM_heading represent the vehicle’s speed in meters per second (m/s)
and the increasing direction clockwise, with north as 0 degrees. SteeringWheelAngle,
denoted as BSM_angle, provides information indicating the direction of the vehicle wheels.

BSM Part 2 expands on safety-related aspects, containing data on various vehicle
events and anomalies in VehicleSafetyExtensions. For example, Event_message contains
flags for events such as eventHardBraking, which indicates hard braking, or eventAirBagDe-
ployment, which indicates airbag deployment, which is a safety-critical situation. Through
these BSMs, vehicles communicate their immediate operational status, including mechani-
cal, environmental, and behavioral aspects, to surrounding vehicles and infrastructure. We
propose to add linePosition message to this BSM Part 2 rather than just known information.

As Figure 1 shows the factors that can cause abnormal behavior, we consider three
major scenarios and simulate them to apply in Section 5.

In the case of autonomous vehicles, many sensors are installed to ensure the safety
of passengers. The first scenario, which can occur frequently in these vehicles, is when
there is an error in the value received from the sensor. The second case considered vehicles
driving in the same lane overlapping due to communication problems. The third scenario
is a counterflow vehicle, which is a scenario that occurs due to various factors. For example,
when a counterflow vehicle occurs in a construction area. An emergency vehicle’s reverse
driving can also occur. The reason we chose these three scenarios is because they occur
frequently around us.

The first scenario is shown in Figure 5. This is a case of frequently operating the
steering wheel while driving the vehicle on a straight road. This is a case where the vehicle
cannot drive straight, but it can occur due to a failure of the vehicle’s steering sensor.
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Figure 5. First scenario: appearance of wrong sensor values. (a) Normal vehicle driving; (b) Abnormal
vehicle driving with wrong data.

In first scenario, the steering wheel data is abnormal, so the messages about steering
wheel operation in BSM are shown in Figure 6a,b. Figure 6a is the steering wheel angle, and
Figure 6b is the information containing the WGS-84 coordinate system information over
time. In Figure 6a,b, it can be seen at a glance that a problem has occurred in the sensor in
the case of an abnormal vehicle.

First scenario, the demonstration of abnormal vehicle is available at https://youtu.be/
Vn67SosNBCM (Video S1: accessed on 15 December 2023) with additional multimedia.

The second scenario is depicted in Figure 7. The problem cannot be resolved using
data alone, as the data matches perfectly with BSM from both vehicles. In such instances, if
the messages received from the RSU are identical for both vehicles, they can be processed
through conditional statements. For instance, if two vehicles transmit identical location

https://youtu.be/Vn67SosNBCM
https://youtu.be/Vn67SosNBCM
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information, abnormal behavior could be detected by the RSU. Consequently, a message to
readjust the RTC (Real Time Clock) in their systems could be sent by the RSU.
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vehicle.

Second scenario, the demonstration of overlap with two vehicles is available at https:
//youtu.be/H9Pv0DYVi_E (Video S2: accessed on 15 December 2023) with additional
multimedia

In the third scenario, as illustrated in Figure 8, the situation appears normal when
viewed through the BSM, similar to the second scenario. However, the addition of the
linePosition information to BSM Part 2 data, as proposed in Table 3, enables the detection of
abnormalities without relying on GPS data calculations. The linePosition element can be
readily computed using cameras installed in autonomous vehicles.

Third scenario, the demonstration of counterflow vehicle is available at https://youtu.
be/6bR8BxJc6_M (Video S3: accessed on 15 December 2023) with additional multimedia
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5. Detection Abnormal Vehicle with Machine Learning

In Section 5, we experiment with a method of detecting abnormal vehicle behavior
using machine learning. In this experiment, the data generated by the simulator in Section 4
is tested on an edge computer. The edge computer used is an industrial PC equipped with
a low-power i7-6600u CPU, 16 GB DDR4 RAM, and 512 GB SSD, suitable for the environ-
ment inside the RSU enclosure. This specification is apt for handling machine learning
computations using the CPU, and GPU-based machine learning methods demanding high
computing resources are excluded from this paper. Among various machine learning
algorithms, Oneclass-SVM, K-Means, HDBSCAN, and Minisom are employed to detect
abnormal vehicle behavior. In the case of HDBSCAN, based on DBSCAN, it adapts more
flexibly to varying densities, making it better suited for clustering complex data sets. The
performance of these algorithms is evaluated in terms of accuracy, recall, and precision
for three scenarios: sensor problems, overlap, and counterflow vehicles. The experimental
values used are the vehicle’s GPS information (aka. lat and lon in BSM), speed, and angle
according to time.

In the sensor problem, Oneclass-SVM shows an accuracy of 47.9%, recall of 47.7%,
and precision of 44.2%. K-Means does not produce significant results, but HDBSCAN
and Minisom achieve 100% accuracy, recall, and precision, respectively. In counterflow,
Oneclass-SVM records an accuracy of 51.5%, a recall rate of 23.1%, and a precision of 19.5%.
K-Means shows low results, and HDBSCAN shows 65% accuracy, 40.3% recall, and 10.1%
precision. Minisom shows the highest performance with 66.7% accuracy, 50% recall, and
93.8% precision. In an overlap, Oneclass-SVM shows an accuracy of 51.5%, a recall rate of
33.7%, and a precision of 47.1%. K-Means and Minisom achieve 100% accuracy, recall, and
precision, and HDB-SCAN achieves 41% accuracy and 36.1% recall.

These results confirm that Minisom consistently shows higher performance than other
algorithms in sensor problems, overlap, and counterflow situations. This suggests that
Minisom is a very effective tool for detecting abnormal behavior. In particular, the BSM
heading change amount is found to be a significant feature in sensor problems, and the
BSM heading value is found to be a significant feature in vehicle overlap. In situations
where vehicles overlap, there is no significant difference between normal driving data and
abnormal driving data. The results of this analysis are detailed in Table 4.
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Table 4. Detected abnormal vehicle with machine learning.

Algorithm Oneclass-SVM K-Means HDBSCAN Minisom

Abnormal Accuracy Recall Precision Accuracy Recall Precision Accuracy Recall Precision Accuracy Recall Precision

Sensor
problem 47.9 47.7 44.2 50 0 0 100 100 100 100 100 100

Overlap 51.5 23.1 19.5 66.7 0 0 65 40.3 10.1 66.7 50 93.8

Counterflow 51.5 33.7 47.1 100 100 100 41 36.1 100 100 100 100

In our research, we investigated the integration of a new linePosition element into
Minisom. Remarkably, with the addition of linePosition, Minisom’s ability to detect overlap-
ping vehicles improved significantly, achieving 100% accuracy, recall, and precision. This
finding highlights the potential of enhancing BSM for more effective abnormal behavior
detection. However, we acknowledge the practical challenges of updating all vehicles to
accommodate the new BSM. Therefore, to reflect the current state of vehicle technology and
ensure the broad applicability of our results, we presented the findings in Table 4 without
incorporating the linePosition element.

When such issues arise, the RSU is capable of prompt intervention. For the first
scenario, it is feasible to dismiss anomalies detected in the vehicle’s data and inform other
vehicles to prepare accordingly. Moreover, the RSU can alert that a malfunction has occurred
in an abnormal vehicle, and in urgent cases, it can inform the police and road management
authorities to safely halt the vehicle. In the second scenario, if special situations like
construction sites are registered with the road management office, the map information can
be updated with relevant data and communicated to other vehicles. In cases of aberrant
behaviors, the RSU can notify the police and assist in the immediate resolution of issues
caused by such behaviors. The third scenario deals with situations where both vehicles
exhibit abnormal behavior. In this case, the RSU can advise both vehicles to synchronize
their system time. Communication failures can be addressed by prompting the use of the
vehicle’s built-in watchdog timer. This timer is a crucial safety feature within the vehicle’s
system that triggers a reset if the system becomes unresponsive, ensuring continuous and
reliable functionality. In other instances, the application of machine learning to the RSU’s
edge computer assists autonomous vehicles in making independent decisions. Our research
contributes to ensuring passenger safety and facilitating smoother traffic flow on the roads.

6. Conclusions

We emphasize the importance of abnormal behavior detection according to the de-
velopment of autonomous vehicle sensors and driving algorithms, research data-centric
approaches, and machine learning-based abnormal behavior detection methods. In this
paper, we present an approach to identifying abnormal behavior by utilizing communi-
cation between the vehicle and RSU, excluding image-based processing. By simulating
V2X communication, we analyzed the abnormal behavior of autonomous vehicles through
vehicle communication protocols, and based on this, experiments are conducted on an edge
computer that will be installed in the actual RSU enclosure.

In this paper, we applied various machine learning algorithms to detect abnormal
behavior in autonomous vehicles, focusing on scenarios involving sensor problems, coun-
terflow, and vehicle overlap. Notably, the Minisom algorithm emerged as a consistently
high performer, demonstrating its effectiveness in these complex scenarios. For instance,
in sensor problem scenarios, Minisom achieved an accuracy of 100%, significantly outper-
forming OneClass-SVM, which showed an accuracy of 47.9%, recall of 47.7%, and precision
of 44.2%. Similarly, in counterflow and overlap scenarios, Minisom again demonstrated su-
perior performance with accuracy, recall, and precision all reaching 100%, while HDBSCAN
and OneClass-SVM showed varied inferior results.

Furthermore, we propose two main enhancements to our system. First, we recommend
adding the linePosition element to BSM Part 2 to simplify calculations and expedite the
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detection of abnormal behavior. Second, we suggest the application of machine learning on
edge computers within RSUs to enable immediate action in scenarios such as sensor errors,
counterflow, and vehicle overlap, allowing for autonomous decisions.

We present the possibility that, in the event of a breakdown of an autonomous vehi-
cle, an external system can monitor the vehicle’s status and take necessary actions. We
provide a new direction for identifying vehicle interior problems from the outside and, if
necessary, taking appropriate measures to ensure the safety of passengers. This provides an
opportunity to respond immediately through an external system when a breakdown in an
autonomous vehicle is not directly recognized by passengers. This approach contributes to
increasing the reliability and safety of autonomous vehicles and will become an important
standard for future research and development.

Supplementary Materials: The following are available online at https://youtu.be/Vn67SosNBCM,
Video S1: 1. Sensor problem. The following are available online at https://youtu.be/H9Pv0DYVi_E,
Video S2: 2. Overlap. The following are available online at https://youtu.be/6bR8BxJc6_M, Video S3:
3. Counterflow.
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