Picowatt Dual-Output Voltage Reference Based on Leakage Current Compensation and Diode-Connected Voltage Divider
Abstract
:1. Introduction
2. Principle of the Proposed Voltage Reference
2.1. Temperature Compensation without Leakage Current Compensation
2.2. Temperature Compensation with Leakage Current Compensation
2.3. Voltage Level Shift of Diode-Connected Voltage Divider
2.4. Trimming Block for Leakage Current Compensation
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
WSN | Wireless Sensor Network |
VR | Voltage reference |
LS | Line sensitivity |
TC | Temperature coefficient |
PSRR | Power supply rejection ratio |
References
- Bhattacharjee, I.; Chowdary, G. A 0.3 nW, 0.093%/V Line Sensitivity, Temperature Compensated Bulk-Programmable Voltage Reference for Wireless Sensor Nodes. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 1281–1293. [Google Scholar] [CrossRef]
- Jia, S.; Ye, T.; Xiao, S. A 2.25 ppm/°C High-Order Temperature-Segmented Compensation Bandgap Reference. Electronics 2024, 13, 1499. [Google Scholar] [CrossRef]
- Palani, R.K.; Bhagavatula, S.; Yuen, D.K. A Sub-1-V 8.5-ppm/°C Sampled Bandgap Voltage Reference. IEEE Trans. Circuits Syst. II Express Briefs 2022, 30, 4153–4157. [Google Scholar] [CrossRef]
- Chen, Q.; Gong, Y.; Tu, R.; Xie, J.; Dai, H.; Chen, Y.; Wei, R.; Li, J.; Luo, Z. A 1.2-V 0.959-ppm/°C multi-section curvature-compensated bandgap voltage reference with trimming. Microelectron. J. 2023, 136, 105769. [Google Scholar] [CrossRef]
- Shen, H.; Wang, Y.; Tang, X.; Li, D.; Feng, X. An ultralow-power CMOS bandgap voltage reference with N+ doped PMOS. Microelectron. J. 2021, 114, 105157. [Google Scholar] [CrossRef]
- Anushree; Kaur, J. Comparative study of Curvature Correction in CMOS Bandgap Reference Circuit. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020; pp. 1–4. [Google Scholar]
- de Lima, V.F.; Klimach, H. A 37 nW MOSFET-Only Voltage Reference in 0.13 μm CMOS. In Proceedings of the 2020 33rd Symposium on Integrated Circuits and Systems Design (SBCCI), Campinas, Brazil, 24–28 August 2020; pp. 1–6. [Google Scholar]
- Lee, I.; Sylvester, D.; Blaauw, D. A Subthreshold Voltage Reference with Scalable Output Voltage for Low-Power IoT Systems. IEEE J. Solid-State Circuits 2017, 52, 1443–1449. [Google Scholar] [CrossRef]
- Li, Y.; Lee, I. An 111 pW Voltage Reference with a Diode-Leakage-Decoupling Replica for High-Temperature Miniature IoT Systems. In Proceedings of the 2021 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 25–30 April 2021; pp. 1–2. [Google Scholar]
- Liao, J.; Zeng, Y.; Li, J.; Yang, J.; Tan, H.-Z. A 3.9 ppm/°C, 31.5 ppm/V ultra-low-power subthreshold CMOS-only voltage reference. Microelectron. J. 2020, 96, 104706. [Google Scholar] [CrossRef]
- Azimi, M.; Habibi, M.; Karimi-Alavijeh, H.R. A 0.4 V, 19 pW subthreshold voltage reference generator using separate line sensitivity and temperature coefficient correction stages. AEU Int. J. Electron. Commun. 2021, 140, 153949. [Google Scholar] [CrossRef]
- Yu, K.; Zhou, Y.; Li, S.; Huang, M. A 23-pW NMOS-Only Voltage Reference with Optimum Body Selection for Process Compensation. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4213–4217. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Cheng, L. A Picowatt CMOS Voltage Reference Operating at 0.5-V Power Supply with Process and Temperature Compensation for Low-Power IoT Systems. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 1336–1340. [Google Scholar] [CrossRef]
- Dong, Q.; Yang, K.; Blaauw, D.; Sylvester, D. A 114-pW PMOS-only, trim-free voltage reference with 0.26% within-wafer inaccuracy for nW systems. In Proceedings of the 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, USA, 15–17 June 2016; pp. 1–2. [Google Scholar]
- Seok, M.; Kim, G.; Blaauw, D.; Sylvester, D. A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V. IEEE J. Solid-State Circuits 2012, 47, 2534–2545. [Google Scholar] [CrossRef]
- Fassio, L.; Lin, L.; Rose, R.D.; Lanuzza, M.; Crupi, F.; Alioto, M. Trimming-Less Voltage Reference for Highly Uncertain Harvesting Down to 0.25 V, 5.4 pW. IEEE J. Solid-State Circuits 2021, 56, 3134–3144. [Google Scholar] [CrossRef]
- Pan, M.; Pang, L.; Xie, J.; Han, Y.; Xu, Q. A 0.6V 44.6 ppm/°C subthreshold CMOS voltage reference with wide temperature range and inherent leakage compensation. Integration 2020, 72, 111–122. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, C.; Wang, L.; Tang, J.; Wang, G. A 0.4-V Wide Temperature Range All-MOSFET Subthreshold Voltage Reference with 0.027%/V Line Sensitivity. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 969–973. [Google Scholar] [CrossRef]
- Lin, I.-F.; Tsai, Y.-C.; Lin, H.-L.; Liao, Y.-T. An 18-nW, 170°C Temperature Range, Voltage and Current Reference Circuit with Low Line Sensitivity. In Proceedings of the 2023 IEEE Asian Solid-State Circuits Conference (A-SSCC), Haikou, China, 5–8 November 2023; pp. 1–3. [Google Scholar]
- Rashidian, H.; Shiri, N. A Sub-1 ppm/°C dual-reference small-area bandgap reference comprising an enhanceable piecewise curvature compensation circuit. AEU Int. J. Electron. Commun. 2024, 175, 155064. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Huang, W.; Zeng, Y. A 67-pW, -162-dB PSRR multi-output voltage reference with multi-loop active load for wireless sensor nodes. AEU Int. J. Electron. Commun. 2023, 169, 154748. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, Y.; Chen, W.; Lin, Y.; Zhi, H.; Tan, H.-z. A 77-nA and Three-Output CMOS Voltage Reference with −73 dB PSRR for Energy Harvesting Systems. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Yue, H.; Sun, X.; Liu, J.; Xu, W.; Li, H.; Wei, B.; Wang, T.; Lin, S. 16.8/15.2 ppm/°C 81 nW High PSRR Dual-Output Voltage Reference for Portable Biomedical Application. Electronics 2019, 8, 213. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, Y.; Zhang, X.; Tan, H.-Z. Ultra-low-power, high PSRR CMOS voltage reference with negative feedback. IET Circuits Devices Syst. 2017, 11, 535–542. [Google Scholar] [CrossRef]
- Qiao, H.; Zhan, C.; Chen, Y. A −40 °C to 140 °C Picowatt CMOS Voltage Reference with 0.25-V Power Supply. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3118–3122. [Google Scholar] [CrossRef]
- Xu, H.; Chen, Y.; Hu, J.; Cai, H.; Du, T.; Liang, K.; Li, G. 110 pA, 170 ppm/V, −77 dB@100 Hz voltage reference for IoT systems. In Proceedings of the 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31 October–3 November 2018; pp. 1–3. [Google Scholar]
- Zhuang, H.; Guo, J.; Tong, C.; Peng, X.; Tang, H. A 8.2-pW 2.4-pA Current Reference Operating at 0.5 V with No Amplifiers or Resistors. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1204–1208. [Google Scholar] [CrossRef]
- Sahishnavi, B.; Kumar, S.; Ali, A.; Dey, A.; Lee, I.; Abbas, Z. A 0.5V, pico-watt, 0.06%/V/0.03%/V low supply sensitive current/voltage reference without using amplifiers and resistors. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar]
- Filip, T.A.; Turcan, I.; Simota, C.-C.; Astanei, D.G.; Olariu, M.A. Fabrication and Preliminary Evaluation of Flexible Screen-Printed Resistive Voltage Divider. In Proceedings of the 2023 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 27–28 October 2023; pp. 1–4. [Google Scholar]
- Chi-Wa, U.; Zeng, W.-L.; Law, M.-K.; Lam, C.-S.; Martins, R.P. A 0.5-V Supply, 36 nW Bandgap Reference with 42 ppm/°C Average Temperature Coefficient within −40 °C to 120 °C. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3656–3669. [Google Scholar]
- Chi-Wa, U.; Law, M.K.; Lam, C.S.; Martins, R.P. Switched-Capacitor Bandgap Voltage Reference for IoT Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 16–29. [Google Scholar]
- Qiao, H.; Zhan, C. A 19–30 ppm/°C Temperature Coefficient Sub-Nanowatt CMOS Voltage Reference with 10-μA Sourcing Capability. In Proceedings of the 2022 IEEE Custom Integrated Circuits Conference (CICC), Newport Beach, CA, USA, 24–27 April 2022; pp. 1–2. [Google Scholar]
- Che, C.; Lei, K.-M.; Martins, R.P.; Mak, P.-I. A 0.4-V 8400 μm2 voltage reference in 65-nm CMOS exploiting well-proximity effect. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3822–3826. [Google Scholar] [CrossRef]
- Azimi, M.; Habibi, M.; Crovetti, P. A Two-Stage Sub-Threshold Voltage Reference Generator Using Body Bias Curvature Compensation for Improved Temperature Coefficient. Electronics 2024, 13, 1390. [Google Scholar] [CrossRef]
Component | W/L (μm/μm) | Component | W/L (μm/μm) |
---|---|---|---|
2.50/1.50 | 2 × 1.49/3.05 | ||
0.18/9.70 | 1.70/1.19 | ||
0.18/9.70 | 2.91/0.185 |
Corner | TT | SS | FF | FS | SF |
---|---|---|---|---|---|
276 | 269 | 287 | 307 | 246 | |
w/o current compensation (ppm/°C) | 74.59 | 184.71 | 33.11 | 103.35 | 71.62 |
w/i current compensation (ppm/°C) | 20.40 | 72.74 | / | 48.74 | / |
Power supply rejection ratio (PSRR)@ = 1.8 V and 10 Hz (dB) | −76.70 | −67.80 | −85.15 | −80.97 | −72.49 |
PSRR@ = 1.8 V and 1 MHz (dB) | −39.27 | −38.97 | −35.89 | −38.46 | −35.56 |
Line sensitivity (LS) from 0.45 to 2.5 V (%/V) | 0.077 | 0.174 | 0.109 | 0.287 | 0.118 |
of total circuit (pW) | 53.83 | 17.42 | 203.17 | 102.32 | 33.53 |
Paper | TCAS-I [30] | TCAS-I [31] | TVLSI [1] | CICC [32] | TCAS-II [33] | MDPI a [34] | This Work a |
---|---|---|---|---|---|---|---|
Year | 2020 | 2022 | 2022 | 2022 | 2023 | 2024 | 2024 |
Technology (nm) | 65 | 65 | 180 | 180 | 65 | 180 | 65 |
Active Area (m2) | 52,200 | 42,500 | 5379 | 16,900 | 8400 | 2358.8 | 3481.28 (1740.64 b) |
(V) | 0.5 | 0.5 | 0.6 | 0.65 | 0.4 | 0.5 | 0.45 |
Temperature Range (°C) | −40∼120 | −40∼120 | −40∼80 | 0∼130 | −20∼80 | 0∼100 | −10∼155 |
Power (pW) | 36,000 | 24,000 | 150 | 809 | 56,700 | 28.8 | 53.83 (26.92 c) |
(mV) | 495 | 503 | 350 | 286 | 107.2 | 195.5 | 276 128 |
Average TC (ppm/°C) | 42 | 32 | 72 | 19.29 | 79.4 | 26.7 | 15.86 34.07 |
LS (%/V) | 0.64 | 0.66 | 0.093 | 0.08 | 0.54 | NA | 0.077 0.103 |
PSRR [≤100 Hz] (dB) | −50@DC | −50@DC | −39@100 Hz | NA | −66.50@10 Hz | −72 d@10 Hz | −76.70@10 Hz −80.46@10 Hz |
PSRR [≥1 kHz] (dB) | −50@DC | −50@DC | −35@1 kHz | NA | NA | −33.3 d@10 kHz | −39.27@1 MHz −56.13@1 MHz |
Integrated Noise (V) | NA | NA | NA | NA | 12.70@10∼100 Hz | 41.80@0.1∼100 Hz | 22.65@0.1∼100 Hz 35.50@0.1∼100 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Luo, Y.; Zeng, Y. Picowatt Dual-Output Voltage Reference Based on Leakage Current Compensation and Diode-Connected Voltage Divider. Electronics 2024, 13, 3533. https://doi.org/10.3390/electronics13173533
Huang Y, Luo Y, Zeng Y. Picowatt Dual-Output Voltage Reference Based on Leakage Current Compensation and Diode-Connected Voltage Divider. Electronics. 2024; 13(17):3533. https://doi.org/10.3390/electronics13173533
Chicago/Turabian StyleHuang, Yuying, Yanshen Luo, and Yanhan Zeng. 2024. "Picowatt Dual-Output Voltage Reference Based on Leakage Current Compensation and Diode-Connected Voltage Divider" Electronics 13, no. 17: 3533. https://doi.org/10.3390/electronics13173533
APA StyleHuang, Y., Luo, Y., & Zeng, Y. (2024). Picowatt Dual-Output Voltage Reference Based on Leakage Current Compensation and Diode-Connected Voltage Divider. Electronics, 13(17), 3533. https://doi.org/10.3390/electronics13173533