Picowatt Dual-Output Voltage Reference Based on Leakage Current Compensation and Diode-Connected Voltage Divider
Abstract
1. Introduction
2. Principle of the Proposed Voltage Reference
2.1. Temperature Compensation without Leakage Current Compensation
2.2. Temperature Compensation with Leakage Current Compensation
2.3. Voltage Level Shift of Diode-Connected Voltage Divider
2.4. Trimming Block for Leakage Current Compensation
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
WSN | Wireless Sensor Network |
VR | Voltage reference |
LS | Line sensitivity |
TC | Temperature coefficient |
PSRR | Power supply rejection ratio |
References
- Bhattacharjee, I.; Chowdary, G. A 0.3 nW, 0.093%/V Line Sensitivity, Temperature Compensated Bulk-Programmable Voltage Reference for Wireless Sensor Nodes. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 1281–1293. [Google Scholar] [CrossRef]
- Jia, S.; Ye, T.; Xiao, S. A 2.25 ppm/°C High-Order Temperature-Segmented Compensation Bandgap Reference. Electronics 2024, 13, 1499. [Google Scholar] [CrossRef]
- Palani, R.K.; Bhagavatula, S.; Yuen, D.K. A Sub-1-V 8.5-ppm/°C Sampled Bandgap Voltage Reference. IEEE Trans. Circuits Syst. II Express Briefs 2022, 30, 4153–4157. [Google Scholar] [CrossRef]
- Chen, Q.; Gong, Y.; Tu, R.; Xie, J.; Dai, H.; Chen, Y.; Wei, R.; Li, J.; Luo, Z. A 1.2-V 0.959-ppm/°C multi-section curvature-compensated bandgap voltage reference with trimming. Microelectron. J. 2023, 136, 105769. [Google Scholar] [CrossRef]
- Shen, H.; Wang, Y.; Tang, X.; Li, D.; Feng, X. An ultralow-power CMOS bandgap voltage reference with N+ doped PMOS. Microelectron. J. 2021, 114, 105157. [Google Scholar] [CrossRef]
- Anushree; Kaur, J. Comparative study of Curvature Correction in CMOS Bandgap Reference Circuit. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020; pp. 1–4. [Google Scholar]
- de Lima, V.F.; Klimach, H. A 37 nW MOSFET-Only Voltage Reference in 0.13 μm CMOS. In Proceedings of the 2020 33rd Symposium on Integrated Circuits and Systems Design (SBCCI), Campinas, Brazil, 24–28 August 2020; pp. 1–6. [Google Scholar]
- Lee, I.; Sylvester, D.; Blaauw, D. A Subthreshold Voltage Reference with Scalable Output Voltage for Low-Power IoT Systems. IEEE J. Solid-State Circuits 2017, 52, 1443–1449. [Google Scholar] [CrossRef]
- Li, Y.; Lee, I. An 111 pW Voltage Reference with a Diode-Leakage-Decoupling Replica for High-Temperature Miniature IoT Systems. In Proceedings of the 2021 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 25–30 April 2021; pp. 1–2. [Google Scholar]
- Liao, J.; Zeng, Y.; Li, J.; Yang, J.; Tan, H.-Z. A 3.9 ppm/°C, 31.5 ppm/V ultra-low-power subthreshold CMOS-only voltage reference. Microelectron. J. 2020, 96, 104706. [Google Scholar] [CrossRef]
- Azimi, M.; Habibi, M.; Karimi-Alavijeh, H.R. A 0.4 V, 19 pW subthreshold voltage reference generator using separate line sensitivity and temperature coefficient correction stages. AEU Int. J. Electron. Commun. 2021, 140, 153949. [Google Scholar] [CrossRef]
- Yu, K.; Zhou, Y.; Li, S.; Huang, M. A 23-pW NMOS-Only Voltage Reference with Optimum Body Selection for Process Compensation. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4213–4217. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Cheng, L. A Picowatt CMOS Voltage Reference Operating at 0.5-V Power Supply with Process and Temperature Compensation for Low-Power IoT Systems. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 1336–1340. [Google Scholar] [CrossRef]
- Dong, Q.; Yang, K.; Blaauw, D.; Sylvester, D. A 114-pW PMOS-only, trim-free voltage reference with 0.26% within-wafer inaccuracy for nW systems. In Proceedings of the 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, USA, 15–17 June 2016; pp. 1–2. [Google Scholar]
- Seok, M.; Kim, G.; Blaauw, D.; Sylvester, D. A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V. IEEE J. Solid-State Circuits 2012, 47, 2534–2545. [Google Scholar] [CrossRef]
- Fassio, L.; Lin, L.; Rose, R.D.; Lanuzza, M.; Crupi, F.; Alioto, M. Trimming-Less Voltage Reference for Highly Uncertain Harvesting Down to 0.25 V, 5.4 pW. IEEE J. Solid-State Circuits 2021, 56, 3134–3144. [Google Scholar] [CrossRef]
- Pan, M.; Pang, L.; Xie, J.; Han, Y.; Xu, Q. A 0.6V 44.6 ppm/°C subthreshold CMOS voltage reference with wide temperature range and inherent leakage compensation. Integration 2020, 72, 111–122. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, C.; Wang, L.; Tang, J.; Wang, G. A 0.4-V Wide Temperature Range All-MOSFET Subthreshold Voltage Reference with 0.027%/V Line Sensitivity. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 969–973. [Google Scholar] [CrossRef]
- Lin, I.-F.; Tsai, Y.-C.; Lin, H.-L.; Liao, Y.-T. An 18-nW, 170°C Temperature Range, Voltage and Current Reference Circuit with Low Line Sensitivity. In Proceedings of the 2023 IEEE Asian Solid-State Circuits Conference (A-SSCC), Haikou, China, 5–8 November 2023; pp. 1–3. [Google Scholar]
- Rashidian, H.; Shiri, N. A Sub-1 ppm/°C dual-reference small-area bandgap reference comprising an enhanceable piecewise curvature compensation circuit. AEU Int. J. Electron. Commun. 2024, 175, 155064. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Huang, W.; Zeng, Y. A 67-pW, -162-dB PSRR multi-output voltage reference with multi-loop active load for wireless sensor nodes. AEU Int. J. Electron. Commun. 2023, 169, 154748. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, Y.; Chen, W.; Lin, Y.; Zhi, H.; Tan, H.-z. A 77-nA and Three-Output CMOS Voltage Reference with −73 dB PSRR for Energy Harvesting Systems. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Yue, H.; Sun, X.; Liu, J.; Xu, W.; Li, H.; Wei, B.; Wang, T.; Lin, S. 16.8/15.2 ppm/°C 81 nW High PSRR Dual-Output Voltage Reference for Portable Biomedical Application. Electronics 2019, 8, 213. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, Y.; Zhang, X.; Tan, H.-Z. Ultra-low-power, high PSRR CMOS voltage reference with negative feedback. IET Circuits Devices Syst. 2017, 11, 535–542. [Google Scholar] [CrossRef]
- Qiao, H.; Zhan, C.; Chen, Y. A −40 °C to 140 °C Picowatt CMOS Voltage Reference with 0.25-V Power Supply. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3118–3122. [Google Scholar] [CrossRef]
- Xu, H.; Chen, Y.; Hu, J.; Cai, H.; Du, T.; Liang, K.; Li, G. 110 pA, 170 ppm/V, −77 dB@100 Hz voltage reference for IoT systems. In Proceedings of the 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31 October–3 November 2018; pp. 1–3. [Google Scholar]
- Zhuang, H.; Guo, J.; Tong, C.; Peng, X.; Tang, H. A 8.2-pW 2.4-pA Current Reference Operating at 0.5 V with No Amplifiers or Resistors. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1204–1208. [Google Scholar] [CrossRef]
- Sahishnavi, B.; Kumar, S.; Ali, A.; Dey, A.; Lee, I.; Abbas, Z. A 0.5V, pico-watt, 0.06%/V/0.03%/V low supply sensitive current/voltage reference without using amplifiers and resistors. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar]
- Filip, T.A.; Turcan, I.; Simota, C.-C.; Astanei, D.G.; Olariu, M.A. Fabrication and Preliminary Evaluation of Flexible Screen-Printed Resistive Voltage Divider. In Proceedings of the 2023 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 27–28 October 2023; pp. 1–4. [Google Scholar]
- Chi-Wa, U.; Zeng, W.-L.; Law, M.-K.; Lam, C.-S.; Martins, R.P. A 0.5-V Supply, 36 nW Bandgap Reference with 42 ppm/°C Average Temperature Coefficient within −40 °C to 120 °C. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3656–3669. [Google Scholar]
- Chi-Wa, U.; Law, M.K.; Lam, C.S.; Martins, R.P. Switched-Capacitor Bandgap Voltage Reference for IoT Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 16–29. [Google Scholar]
- Qiao, H.; Zhan, C. A 19–30 ppm/°C Temperature Coefficient Sub-Nanowatt CMOS Voltage Reference with 10-μA Sourcing Capability. In Proceedings of the 2022 IEEE Custom Integrated Circuits Conference (CICC), Newport Beach, CA, USA, 24–27 April 2022; pp. 1–2. [Google Scholar]
- Che, C.; Lei, K.-M.; Martins, R.P.; Mak, P.-I. A 0.4-V 8400 μm2 voltage reference in 65-nm CMOS exploiting well-proximity effect. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3822–3826. [Google Scholar] [CrossRef]
- Azimi, M.; Habibi, M.; Crovetti, P. A Two-Stage Sub-Threshold Voltage Reference Generator Using Body Bias Curvature Compensation for Improved Temperature Coefficient. Electronics 2024, 13, 1390. [Google Scholar] [CrossRef]
Component | W/L (μm/μm) | Component | W/L (μm/μm) |
---|---|---|---|
2.50/1.50 | 2 × 1.49/3.05 | ||
0.18/9.70 | 1.70/1.19 | ||
0.18/9.70 | 2.91/0.185 |
Corner | TT | SS | FF | FS | SF |
---|---|---|---|---|---|
276 | 269 | 287 | 307 | 246 | |
w/o current compensation (ppm/°C) | 74.59 | 184.71 | 33.11 | 103.35 | 71.62 |
w/i current compensation (ppm/°C) | 20.40 | 72.74 | / | 48.74 | / |
Power supply rejection ratio (PSRR)@ = 1.8 V and 10 Hz (dB) | −76.70 | −67.80 | −85.15 | −80.97 | −72.49 |
PSRR@ = 1.8 V and 1 MHz (dB) | −39.27 | −38.97 | −35.89 | −38.46 | −35.56 |
Line sensitivity (LS) from 0.45 to 2.5 V (%/V) | 0.077 | 0.174 | 0.109 | 0.287 | 0.118 |
of total circuit (pW) | 53.83 | 17.42 | 203.17 | 102.32 | 33.53 |
Paper | TCAS-I [30] | TCAS-I [31] | TVLSI [1] | CICC [32] | TCAS-II [33] | MDPI a [34] | This Work a |
---|---|---|---|---|---|---|---|
Year | 2020 | 2022 | 2022 | 2022 | 2023 | 2024 | 2024 |
Technology (nm) | 65 | 65 | 180 | 180 | 65 | 180 | 65 |
Active Area (m2) | 52,200 | 42,500 | 5379 | 16,900 | 8400 | 2358.8 | 3481.28 (1740.64 b) |
(V) | 0.5 | 0.5 | 0.6 | 0.65 | 0.4 | 0.5 | 0.45 |
Temperature Range (°C) | −40∼120 | −40∼120 | −40∼80 | 0∼130 | −20∼80 | 0∼100 | −10∼155 |
Power (pW) | 36,000 | 24,000 | 150 | 809 | 56,700 | 28.8 | 53.83 (26.92 c) |
(mV) | 495 | 503 | 350 | 286 | 107.2 | 195.5 | 276 128 |
Average TC (ppm/°C) | 42 | 32 | 72 | 19.29 | 79.4 | 26.7 | 15.86 34.07 |
LS (%/V) | 0.64 | 0.66 | 0.093 | 0.08 | 0.54 | NA | 0.077 0.103 |
PSRR [≤100 Hz] (dB) | −50@DC | −50@DC | −39@100 Hz | NA | −66.50@10 Hz | −72 d@10 Hz | −76.70@10 Hz −80.46@10 Hz |
PSRR [≥1 kHz] (dB) | −50@DC | −50@DC | −35@1 kHz | NA | NA | −33.3 d@10 kHz | −39.27@1 MHz −56.13@1 MHz |
Integrated Noise (V) | NA | NA | NA | NA | 12.70@10∼100 Hz | 41.80@0.1∼100 Hz | 22.65@0.1∼100 Hz 35.50@0.1∼100 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Luo, Y.; Zeng, Y. Picowatt Dual-Output Voltage Reference Based on Leakage Current Compensation and Diode-Connected Voltage Divider. Electronics 2024, 13, 3533. https://doi.org/10.3390/electronics13173533
Huang Y, Luo Y, Zeng Y. Picowatt Dual-Output Voltage Reference Based on Leakage Current Compensation and Diode-Connected Voltage Divider. Electronics. 2024; 13(17):3533. https://doi.org/10.3390/electronics13173533
Chicago/Turabian StyleHuang, Yuying, Yanshen Luo, and Yanhan Zeng. 2024. "Picowatt Dual-Output Voltage Reference Based on Leakage Current Compensation and Diode-Connected Voltage Divider" Electronics 13, no. 17: 3533. https://doi.org/10.3390/electronics13173533
APA StyleHuang, Y., Luo, Y., & Zeng, Y. (2024). Picowatt Dual-Output Voltage Reference Based on Leakage Current Compensation and Diode-Connected Voltage Divider. Electronics, 13(17), 3533. https://doi.org/10.3390/electronics13173533