Fully Integrated Miniaturized Wireless Power Transfer Rectenna for Medical Applications Tested inside Biological Tissues
Abstract
1. Introduction
2. Rectenna Development
3. Test Setup
4. Open Air Tests
4.1. Frequency Sweep Tests
4.2. Power Sweep Tests
5. Biological Tissues Tests
6. In-Body Operation Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosen, A.; Stuchly, M.A.; Vander Vorst, A. Applications of RF/Microwaves in Medicine. IEEE Trans. Microw. Theory Tech. 2002, 50, 963–974. [Google Scholar] [CrossRef]
- Borges Carvalho, N.; Georgiadis, A.; Costanzo, A.; Rogier, H.; Collado, A.; Garcia, J.A.; Lucyszyn, S.; Mezzanotte, P.; Kracek, J.; Masotti, D.; et al. Wireless Power Transmission: R&D Activities within Europe. IEEE Trans. Microw. Theory Tech. 2014, 62, 1031–1045. [Google Scholar] [CrossRef]
- Diez-Jimenez, E.; Sanchez-Montero, R.; Martinez-Muñoz, M. Towards Miniaturization of Magnetic Gears: Torque Performance Assessment. Micromachines 2017, 9, 16. [Google Scholar] [CrossRef]
- Li, G.; Patel, N.A.; Burdette, E.C.; Pilitsis, J.G.; Su, H.; Fischer, G.S. A Fully Actuated Robotic Assistant for MRI-Guided Precision Conformal Ablation of Brain Tumors. IEEE/ASME Trans. Mechatron. 2021, 26, 255–266. [Google Scholar] [CrossRef]
- Haerinia, M.; Shadid, R. Wireless Power Transfer Approaches for Medical Implants: A Review. Signals 2020, 1, 209–229. [Google Scholar] [CrossRef]
- Basir, A.; Yoo, H. Efficient Wireless Power Transfer System with a Miniaturized Quad-Band Implantable Antenna for Deep-Body Multitasking Implants. IEEE Trans. Microw. Theory Tech. 2020, 68, 1943–1953. [Google Scholar] [CrossRef]
- Martínez Rojas, J.A.; Fernández, J.L.; Montero, R.S.; Espí, P.L.L.; Diez-Jimenez, E. Model-Based Systems Engineering Applied to Trade-off Analysis of Wireless Power Transfer Technologies for Implanted Biomedical Microdevices. Sensors 2021, 21, 3201. [Google Scholar] [CrossRef]
- Martinez-Rojas, J.A.; Fernandez-Sanchez, J.L.; Fernandez-Munoz, M.; Sanchez-Montero, R.; Lopez-Espi, P.L.; Diez-Jimenez, E. Model-Based Systems Engineering Approach to the Study of Electromagnetic Interference and Compatibility in Wireless Powered Microelectromechanical Systems. Syst. Eng. 2023, 27, 485–498. [Google Scholar] [CrossRef]
- Karacolak, T.; Hood, A.Z.; Topsakal, E. Design of a Dual-Band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring. IEEE Trans. Microw. Theory Tech. 2008, 56, 1001–1008. [Google Scholar] [CrossRef]
- Cho, N.; Roh, T.; Bae, J.; Yoo, H.J. A Planar MICS Band Antenna Combined with a Body Channel Communication Electrode for Body Sensor Network. IEEE Trans. Microw. Theory Tech. 2009, 57, 2515–2522. [Google Scholar] [CrossRef]
- Rodrigues, D.B.; Maccarini, P.F.; Salahi, S.; Oliveira, T.R.; Pereira, P.J.S.; Limao-Vieira, P.; Snow, B.W.; Reudink, D.; Stauffer, P.R. Design and Optimization of an Ultra Wideband and Compact Microwave Antenna for Radiometric Monitoring of Brain Temperature. IEEE Trans. Biomed. Eng. 2014, 61, 2154–2160. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.T.; Kang, B.; Choi, E.; Park, J.O.; Kim, C.S. High-Frequency and High-Powered Electromagnetic Actuation System Utilizing Two-Stage Resonant Effects. IEEE/ASME Trans. Mechatron. 2020, 25, 2398–2408. [Google Scholar] [CrossRef]
- Basset, P.; Kaiser, A.; Legrand, B.; Collard, D.; Buchaillot, L. Complete System for Wireless Powering and Remote Control of Electrostatic Actuators by Inductive Coupling. IEEE/ASME Trans. Mechatron. 2007, 12, 23–31. [Google Scholar] [CrossRef]
- Gao, J.; Yan, G. A Novel Power Management Circuit Using a Super-Capacitor Array for Wireless Powered Capsule Robot. IEEE/ASME Trans. Mechatron. 2017, 22, 1444–1455. [Google Scholar] [CrossRef]
- Villalba-Alumbreros, G.; Moron-Alguacil, C.; Fernandez-Munoz, M.; Valiente-Blanco, I.; Diez-Jimenez, E. Scale Effects on Performance of BLDC Micromotors for Internal Biomedical Applications: A Finite Element Analysis. J. Med. Device 2022, 16, 031011. [Google Scholar] [CrossRef]
- Kim, J.; Rahmat-Samii, Y. Implanted Antennas inside a Human Body: Simulations, Designs, and Characterizations. IEEE Trans. Microw. Theory Tech. 2004, 52, 1934–1943. [Google Scholar] [CrossRef]
- Kiourti, A.; Nikita, K.S. A Review of Implantable Patch Antennas for Biomedical Telemetry: Challenges and Solutions. IEEE Antennas Propag. Mag. 2012, 54, 210–228. [Google Scholar] [CrossRef]
- Diez-Jimenez, E.; Valiente-Blanco, I.; Villalba-Alumbreros, G.; Fernandez-Munoz, M.; Lopez-Pascual, D.; Lastra-Sedano, A.; Moron-Alguacil, C.; Martinez-Perez, A. Multilayered Microcoils for Microactuators and Characterization of Their Operational Limits in Body-Like Environments. IEEE/ASME Trans. Mechatron. 2022, 28, 1789–1794. [Google Scholar] [CrossRef]
- Muñoz-Martínez, M.; Diez-Jimenez, E.; Gómez-García, M.J.; Rizzo, R.; Musolino, A. Torque and Bearing Reaction Forces Simulation of Micro-Magnetic Gears. Appl. Comput. Electromagn. Soc. J. 2019, 34, 541–546. [Google Scholar]
- Kiourti, A.; Nikita, K.S. A Review of In-Body Biotelemetry Devices: Implantables, Ingestibles, and Injectables. IEEE Trans. Biomed. Eng. 2017, 64, 1422–1430. [Google Scholar] [CrossRef]
- Ho, J.S.; Kim, S.; Poon, A.S.Y. Midfield Wireless Powering for Implantable Systems. Proc. IEEE 2013, 101, 1369–1378. [Google Scholar] [CrossRef]
- Zargham, M.; Gulak, P.G. Maximum Achievable Efficiency in Near-Field Coupled Power-Transfer Systems. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 228–245. [Google Scholar] [CrossRef] [PubMed]
- Schormans, M.; Valente, V.; Demosthenous, A. Practical Inductive Link Design for Biomedical Wireless Power Transfer: A Tutorial. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1112–1130. [Google Scholar] [CrossRef] [PubMed]
- Karampatea, A.; Siakavara, K. Synthesis of Rectenna for Powering Micro-Watt Sensors by Harvesting Ambient RF Signals’ Power. Electronics 2019, 8, 1108. [Google Scholar] [CrossRef]
- Park, Y.; Koh, S.T.; Lee, J.; Kim, H.; Choi, J.; Ha, S.; Kim, C.; Je, M. A Wireless Power and Data Transfer IC for Neural Prostheses Using a Single Inductive Link with Frequency-Splitting Characteristic. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 1306–1319. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Li, Z.; Tang, Y.; Chen, X. Dual-Polarized Dipole Antenna for Wireless Data and Microwave Power Transfer. Electronics 2022, 11, 778. [Google Scholar] [CrossRef]
- Kraus, J.D.; Marhefka, R.J.; Khan, A.S. Antennas and Wave Propagation; McGraw-Hill: New York, NY, USA, 2006; ISBN 9352606183. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 1119178983. [Google Scholar]
- Gosalia, K.; Humayun, M.S.; Lazzi, G. Impedance Matching and Implementation of Planar Space-Filling Dipoles as Intraocular Implanted Antennas in a Retinal Prosthesis. IEEE Trans. Antennas Propag. 2005, 53, 2365–2373. [Google Scholar] [CrossRef]
- Lannoye, P. La Pollution Électromagnétique et La Santé: Vers Une Maítrise Des Risques; Editions Frison-Roche: Paris, France, 1994; ISBN 2876711648. [Google Scholar]
- Zhang, H.; Gao, S.P.; Ngo, T.; Wu, W.; Guo, Y.X. Wireless Power Transfer Antenna Alignment Using Intermodulation for Two-Tone Powered Implantable Medical Devices. IEEE Trans. Microw. Theory Tech. 2019, 67, 1708–1716. [Google Scholar] [CrossRef]
- Limiting, F.O.R.; To, E.; Fields, M. Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz to 100 KHz). Health Phys. 2010, 99, 818–836. [Google Scholar] [CrossRef]
- Ziegelberger, G.; Croft, R.; Feychting, M.; Green, A.C.; Hirata, A.; d’Inzeo, G.; Jokela, K.; Loughran, S.; Marino, C.; Miller, S.; et al. Guidelines for Limiting Exposure to Electromagnetic Fields (100 KHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar]
- Ahlbom, A.; Bergqvist, U.; Bernhardt, J.H.; Cesarini, J.P.; Court, L.A.; Grandolfo, M.; Hietanen, M.; McKinlay, A.F.; Repacholi, M.H.; Sliney, D.H.; et al. Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz). Health Phys. 1998, 74, 494–521. [Google Scholar]
- Bailey, W.H.; Harrington, T.; Hirata, A.; Kavet, R.R.O.B.; Keshvari, J.; Klauenberg, B.J.; Legros, A.; Maxson, D.P.; Osepchuk, J.M.; Reilly, J.P.; et al. Synopsis of IEEE Std C95.1TM-2019 “IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz”; IEEE: Piscataway, NJ, USA, 2019; Volume 7, ISBN 9781504455480. [Google Scholar]
- Hirata, A.; Fujiwara, O.; Shiozawa, T. Correlation between Peak Spatial-Average SAR and Temperature Increase Due to Antennas Attached to Human Trunk. IEEE Trans. Biomed. Eng. 2006, 53, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Bercich, R.A.; Duffy, D.R.; Irazoqui, P.P. Far-Field RF Powering of Implantable Devices: Safety Considerations. IEEE Trans. Biomed. Eng. 2013, 60, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Munoz, M.; Sanchez-Montero, R.; Lopez-Espi, P.L.; Martinez-Rojas, J.A.; Diez-Jimenez, E. Miniaturized High Gain Flexible Spiral Antenna Tested in Human-Like Tissues. IEEE Trans. Nanotechnol. 2022, 21, 772–777. [Google Scholar] [CrossRef]
- Chen, X.; Yeoh, W.G.; Choi, Y.B.; Li, H.; Singh, R. A 2.45-GHz near-Field RFID System with Passive on-Chip Antenna Tags. IEEE Trans. Microw. Theory Tech. 2008, 56, 1397–1404. [Google Scholar] [CrossRef]
- Radiom, S.; Baghaei-Nejad, M.; Mohammadpour-Aghdam, K.; Vandenbosch, G.A.E.; Zheng, L.R.; Gielen, G.G.E. Far-Field on-Chip Antennas Monolithically Integrated in a Wireless-Powered 5.8-GHz Downlink/UWB Uplink RFID Tag in 0.18-Μm Standard CMOS. IEEE J. Solid-State Circuits 2010, 45, 1746–1758. [Google Scholar] [CrossRef]
- Ouda, M.H.; Arsalan, M.; Marnat, L.; Shamim, A.; Salama, K.N. 5.2-GHz RF Power Harvester in 0.18-Μm CMOS for Implantable Intraocular Pressure Monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2177–2184. [Google Scholar] [CrossRef]
- Tabesh, M.; Rangwala, M.; Niknejad, A.M.; Arbabian, A. A Power-Harvesting Pad-Less Mm-Sized 24/60 GHz Passive Radio with on-Chip Antennas. In Proceedings of the 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, USA, 10–13 June 2014. [Google Scholar] [CrossRef]
- Rahmani, H.; Babakhani, A. A Wireless Power Receiver with an On-Chip Antenna for Millimeter-Size Biomedical Implants in 180 Nm SOI CMOS. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 300–303. [Google Scholar] [CrossRef]
- Hirai, T.; Itoh, T.; Hirose, Y.; Sakai, N.; Noguchi, K.; Itoh, K.; Hasegawa, N.; Hirakawa, T.; Nakamoto, Y.; Ohta, Y. 28 GHz Band Wireless Power Transfer Experiments with a GaAs Rectenna MMIC with an Inductive High Impedance Patch Antenna. In Proceedings of the 2022 Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, 29 November–2 December 2022; pp. 731–733. [Google Scholar] [CrossRef]
- Muttlak, S.G.; Sadeghi, M.; Ian, K.; Missous, M. Low-Cost Compact Integrated Rectenna for Implantable Medical Receivers. IEEE Sens. J. 2022, 22, 16938–16944. [Google Scholar] [CrossRef]
- Muttlak, S.G.; Sadeghi, M.; Ian, K.; Missous, M. Miniaturized Folded Antenna with Improved Matching Characteristic for Mm-Wave Detections. In Proceedings of the 14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT), Lancaster, UK, 13–15 September 2021. [Google Scholar] [CrossRef]
- Ali, E.M.; Yahaya, N.Z.; Saraereh, O.A.; Al Assaf, A.H.; Alqasem, B.H.; Iqbal, S.; Ibrahim, O.; Patel, A.V. Power Conversion Using Analytical Model of Cockcroft-walton Voltage Multiplier Rectenna. Electronics 2021, 10, 881. [Google Scholar] [CrossRef]
- Walsh, C.; Muttlak, S.G.; Sadeghi, M.; Missous, M. Miniature Integrated 2.4 GHz Rectennas Using Novel Tunnel Diodes. Sensors 2023, 23, 6409. [Google Scholar] [CrossRef]
- CATECHOM. Available online: https://catechom.web.uah.es/index.php/es/ (accessed on 29 September 2022).
- Ministerio de Trabajo y Asuntos Sociales de España NTP 234: Exposición a Radiofrecuencias y Microondas (I). Evaluación. Nota técnica Prevención del Inst. Nac. Segur. e Hig. 1989.
- Kotalczyk, A.; Imberti, J.F.; Lip, G.Y.H.; Wright, D.J. Telemedical Monitoring Based on Implantable Devices—The Evolution Beyond the CardioMEMSTM Technology. Curr. Heart Fail. Rep. 2022, 19, 7–14. [Google Scholar] [CrossRef] [PubMed]
Reference | Freq. (GHz) | Area (mm2) | Distance (cm) a | Pt (W) b | VDC (V) c | PDC (μW) d | PTE (dB) e |
---|---|---|---|---|---|---|---|
[39] | 2.45 | 1 × 0.5 | 0.05 | 0.25 | 0.6 | 94.7 | −34.2 |
[40] | 5.8 | 3 × 1.5 | 7.5 | 4 | 1.8 | 0.6 | −68.3 |
[41] | 5.2 | 3.2 × 1.5 | 3.5 | 5 | 1.15 | 100 | −47 |
[42] | 24 | 3.7 × 1.2 | 28 | 10 | 0.9 | 1.5 | −68.2 |
[43] | 2.75 | 1.6 × 1.6 | 2 | 1 | 1.1 | 1200 | −29.5 |
[44] | 28 | 1.8 × 1.8 | 500 | 25,000 | 0.19 | 8.6 | −94.7 |
G2 rectenna | 1.46 | 1 × 5 | 4 | 312.35 | 5.29 | 56 | −67.46 |
G3 rectenna | 1.175 | 1 × 5 | 4 | 256.55 | 4.62 | 4270 | −47.79 |
Location | Tissue Thickness (cm) | Transmission Efficiency through Tissues (%) | Signal Duty Cycle (%) | Electric Field Incident in the Skin (V/m) | Electric Field Incident in the Rectenna (V/m) | Rectenna Output Voltage (V) | Rectenna Output Power (mW) | |
---|---|---|---|---|---|---|---|---|
HCW a | LCW b | |||||||
Under the skin | 0.5 | 0 | 71.597 | 28 | 714.28 | 511.41 | 4.42 | 4.08 |
Stomach | 3 | 6 | 7.908 | 5 | 4000 | 316.31 | 2.73 | 2.52 |
Cerebral cortex (pia mater) | 2 | 2 | 22.003 | 10 | 2000 | 440.05 | 3.80 | 3.51 |
Heart ventricle/pulmonary artery | 3 | 4 | 9.444 | 5 | 4000 | 377.76 | 3.26 | 3.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Munoz, M.; Missous, M.; Sadeghi, M.; Lopez-Espi, P.L.; Sanchez-Montero, R.; Martinez-Rojas, J.A.; Diez-Jimenez, E. Fully Integrated Miniaturized Wireless Power Transfer Rectenna for Medical Applications Tested inside Biological Tissues. Electronics 2024, 13, 3159. https://doi.org/10.3390/electronics13163159
Fernandez-Munoz M, Missous M, Sadeghi M, Lopez-Espi PL, Sanchez-Montero R, Martinez-Rojas JA, Diez-Jimenez E. Fully Integrated Miniaturized Wireless Power Transfer Rectenna for Medical Applications Tested inside Biological Tissues. Electronics. 2024; 13(16):3159. https://doi.org/10.3390/electronics13163159
Chicago/Turabian StyleFernandez-Munoz, Miguel, Mohamed Missous, Mohammadreza Sadeghi, Pablo Luis Lopez-Espi, Rocio Sanchez-Montero, Juan Antonio Martinez-Rojas, and Efren Diez-Jimenez. 2024. "Fully Integrated Miniaturized Wireless Power Transfer Rectenna for Medical Applications Tested inside Biological Tissues" Electronics 13, no. 16: 3159. https://doi.org/10.3390/electronics13163159
APA StyleFernandez-Munoz, M., Missous, M., Sadeghi, M., Lopez-Espi, P. L., Sanchez-Montero, R., Martinez-Rojas, J. A., & Diez-Jimenez, E. (2024). Fully Integrated Miniaturized Wireless Power Transfer Rectenna for Medical Applications Tested inside Biological Tissues. Electronics, 13(16), 3159. https://doi.org/10.3390/electronics13163159