RDF Stream Taxonomy: Systematizing RDF Stream Types in Research and Practice
Abstract
:1. Introduction
2. Literature Review
2.1. RDF Streaming Protocols
2.2. Stream Processing and Reasoning
2.3. Streaming Semantic Annotation and Translation
2.4. Semantic Streaming Applications
2.5. Streaming I/O
2.6. Summary
3. Proposed Systematization
3.1. RDF Stream Definitions
3.2. RDF Stream Taxonomy
3.3. Taxonomy Correspondence to the State of the Art
4. RDF-STaX Ontology
4.1. Ontology Usage Patterns
4.2. Alignments to Other Ontologies
- SPARQL 1.1 Service Description vocabulary [66]—the classes for RDF graphs (sd:Graph) and datasets (sd:Dataset) were aligned with the corresponding terms in RDF-STaX (stax:graph and stax:dataset, respectively), which are instances of class stax:RdfElementType.
- VoCaLS [43]—the vocals:RDFStream class was aligned with both the stax:flatTripleStream and stax:graphStream instances in RDF-STaX.
- LDES [56]—the ldes:EventStream class was aligned with the stax:subjectGraphStream instance in RDF-STaX.
- VoID [67]—the void:Dataset class was aligned with the stax:flatTripleStream instance in RDF-STaX.
4.3. Availability and Sustainability
5. Use Cases
5.1. Annotating Published Datasets and Streams
5.2. Embedding Metadata in Streams
5.3. Analyzing the State of the Art of RDF Streaming
6. Ontology Evaluation
6.1. Use Case Coverage
6.2. Logical and OWL Profile Validity
6.3. Findability, Accessibility, Interoperability, and Reusability
6.4. Comparison with the State of the Art
7. Discussion and Future Work
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CI/CD | Continuous Integration and Continuous Delivery |
CQ | Competency Question |
DCAT | Data Catalog Vocabulary |
FAIR | Findable, Accessible, Interoperable, Reusable |
FOOPS! | Ontology Pitfall Scanner for FAIR |
GoT | Graph of Things |
I/O | Input/Output |
IPSM | Inter Platform Semantic Mediator |
IRI | Internationalized Resource Identifier |
LDES | Linked Data Event Streams |
OOPS! | Ontology Pitfall Scanner |
OWL | Web Ontology Language |
RDF | Resource Description Framework |
RDF-STaX | RDF Stream Taxonomy |
ROBOT | ROBOT is an OBO Tool |
RML | RDF Mapping Language |
RSP | RDF Stream Processing |
SHACL | Shapes Constraint Language |
SKOS | Simple Knowledge Organization System |
SPARQL | SPARQL Protocol And RDF Query Language |
TA-RDF | Time-Annotated RDF |
URI | Uniform Resource Identifier |
W3C | World Wide Web Consortium |
References
- Pan, J.Z. Resource Description Framework. In Handbook on Ontologies; Springer: Berlin/Heidelberg, Germany, 2009; pp. 71–90. [Google Scholar]
- Hitzler, P. A review of the Semantic Web field. Commun. ACM 2021, 64, 76–83. [Google Scholar] [CrossRef]
- Cyganiak, R.; Wood, D.; Lanthaler, M. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, W3C. 2014. Available online: https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ (accessed on 17 April 2024).
- Kleppmann, M. Designing Data-Intensive Applications: The Big Ideas behind Reliable, Scalable, and Maintainable Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017. [Google Scholar]
- Bonte, P.; Tommasini, R. Streaming linked data: A survey on life cycle compliance. J. Web Semant. 2023, 77, 100785. [Google Scholar] [CrossRef]
- Sowiński, P.; Wasielewska-Michniewska, K.; Ganzha, M.; Paprzycki, M. (2022, October). Efficient RDF streaming for the edge-cloud continuum. In Proceedings of the 2022 IEEE 8th World Forum on Internet of Things (WF-IoT), Yokohama, Japan, 26 October–11 November 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Tommasini, R.; Bonte, P.; Spiga, F.; Della Valle, E. Streaming Linked Data: From Vision to Practice; Springer Nature: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Van Assche, D.; Delva, T.; Haesendonck, G.; Heyvaert, P.; De Meester, B.; Dimou, A. Declarative RDF graph generation from heterogeneous (semi-) structured data: A systematic literature review. J. Web Semant. 2023, 75, 100753. [Google Scholar] [CrossRef]
- Dell’Aglio, D.; Della Valle, E.; Calbimonte, J.P.; Corcho, O. RSP-QL semantics: A unifying query model to explain heterogeneity of RDF stream processing systems. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2014, 10, 17–44. [Google Scholar] [CrossRef]
- Fernández, J.D.; Llaves, A.; Corcho, O. Efficient RDF interchange (ERI) format for RDF data streams. In Proceedings of the International Semantic Web Conference, Riva del Garda, Italy, 19–23 October 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 244–259. [Google Scholar]
- Oo, S.M.; Haesendonck, G.; De Meester, B.; Dimou, A. RMLStreamer-SISO: An RDF stream generator from streaming heterogeneous data. In Proceedings of the International Semantic Web Conference, Hangzhou, China, 24 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 697–713. [Google Scholar]
- Dell’Aglio, D.; Dao-Tran, M.; Calbimonte, J.P.; Le Phuoc, D.; Della Valle, E. A query model to capture event pattern matching in RDF stream processing query languages. In Proceedings of the European Knowledge Acquisition Workshop, Bologna, Italy, 19 November 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 145–162. [Google Scholar]
- Le-Phuoc, D.; Polleres, A.; Hauswirth, M.; Tummarello, G.; Morbidoni, C. Rapid prototyping of semantic mash-ups through semantic web pipes. In Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 20–24 April 2009; pp. 581–590. [Google Scholar]
- Schraudner, D.; Harth, A. Stream Containers for Resource-oriented RDF Stream Processing. arXiv 2022, arXiv:2202.13630. [Google Scholar]
- Keskisärkkä, R.; Blomqvist, E. Semantic complex event processing for social media monitoring–a survey. In Proceedings of the Social Media and Linked Data for Emergency Response (SMILE) Co-located with the 10th Extended Semantic Web Conference, Montpellier, France, 26–27 May 2013. CEUR Workshop Proceedings (May 2013). [Google Scholar]
- Llanes, K.R.; Casanova, M.A.; Lemus, N.M. From sensor data streams to linked streaming data: A survey of main approaches. J. Inf. Data Manag. 2016, 7, 130. [Google Scholar]
- Ma, Z.; Capretz, M.A.; Yan, L. Storing massive Resource Description Framework (RDF) data: A survey. Knowl. Eng. Rev. 2016, 31, 391–413. [Google Scholar] [CrossRef]
- Modoni, G.E.; Sacco, M.; Terkaj, W. A survey of RDF store solutions. In Proceedings of the 2014 International Conference on Engineering, Technology and Innovation (ICE), Bergamo, Italy, 23–25 June 2014; IEEE: New York, NY, USA, 2014; pp. 1–7. [Google Scholar]
- Özsu, M.T. A survey of RDF data management systems. Front. Comput. Sci. 2016, 10, 418–432. [Google Scholar] [CrossRef]
- Su, X.; Gilman, E.; Wetz, P.; Riekki, J.; Zuo, Y.; Leppänen, T. Stream reasoning for the Internet of Things: Challenges and gap analysis. In Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics, Nîmes, France, 13–15 June 2016; pp. 1–10. [Google Scholar]
- Zhang, F.; Li, Z.; Peng, D.; Cheng, J. RDF for temporal data management—A survey. Earth Sci. Inform. 2021, 14, 563–599. [Google Scholar] [CrossRef]
- Hasemann, H.; Kröller, A.; Pagel, M. RDF Provisioning for the Internet of Things. In Proceedings of the 2012 3rd IEEE International Conference on the Internet of Things, Wuxi, China, 24–26 October 2012; IEEE: New York, NY, USA, 2012; pp. 143–150. [Google Scholar]
- Fernández, N.; Arias, J.; Sánchez, L.; Fuentes-Lorenzo, D.; Corcho, Ó. RDSZ: An approach for lossless RDF stream compression. In Proceedings of the European Semantic Web Conference, Riva del Garda, Italy, 19–23 October 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 52–67. [Google Scholar]
- Käbisch, S.; Peintner, D.; Anicic, D. Standardized and efficient RDF encoding for constrained embedded networks. In Proceedings of the European Semantic Web Conference, Bethlehem, PA, USA, 11–15 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 437–452. [Google Scholar]
- Groppe, S.; Groppe, J.; Kukulenz, D.; Linnemann, V. A SPARQL engine for streaming RDF data. In Proceedings of the 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, Shanghai, China, 16–18 December 2007; IEEE: New York, NY, USA, 2007; pp. 167–174. [Google Scholar]
- Anicic, D.; Fodor, P.; Rudolph, S.; Stojanovic, N. EP-SPARQL: A unified language for event processing and stream reasoning. In Proceedings of the 20th International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 635–644. [Google Scholar]
- Barbieri, D.F.; Braga, D.; Ceri, S.; Valle, E.D.; Grossniklaus, M. Querying RDF streams with C-SPARQL. ACM SIGMOD Rec. 2010, 39, 20–26. [Google Scholar] [CrossRef]
- Bolles, A.; Grawunder, M.; Jacobi, J. Streaming SPARQL–extending SPARQL to process data streams. In Proceedings of the The Semantic Web: Research and Applications: 5th European Semantic Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain, 1–5 June 2008; Proceedings 5. Springer: Berlin/Heidelberg, Germany, 2008; pp. 448–462. [Google Scholar]
- Calbimonte, J.P.; Corcho, Ó. Evaluating SPARQL Queries over Linked Data Streams. In Linked Data Management; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016; pp. 165–190. [Google Scholar]
- Dell’Aglio, D.; Calbimonte, J.P.; Della Valle, E.; Corcho, O. Towards a unified language for RDF stream query processing. In Proceedings of the European Semantic Web Conference, Bethlehem, PA, USA, 11–15 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 353–363. [Google Scholar]
- Komazec, S.; Cerri, D.; Fensel, D. Sparkwave: Continuous schema-enhanced pattern matching over RDF data streams. In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, Berlin, Germany, 16–20 July 2012; pp. 58–68. [Google Scholar]
- Le-Phuoc, D.; Dao-Tran, M.; Xavier Parreira, J.; Hauswirth, M. A native and adaptive approach for unified processing of linked streams and linked data. In Proceedings of the International Semantic Web Conference, Bonn, Germany, 23–27 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 370–388. [Google Scholar]
- Tommasini, R.; Bonte, P.; Ongenae, F.; Della Valle, E. RSP4J: An API for RDF stream processing. In Proceedings of the The Semantic Web: 18th International Conference, ESWC 2021, Virtual Event, 6–10 June 2021; Proceedings 18. Springer: Berlin/Heidelberg, Germany, 2021; pp. 565–581. [Google Scholar]
- Dell’Aglio, D.; Calbimonte, J.P.; Balduini, M.; Corcho, O.; Della Valle, E. On correctness in RDF stream processor benchmarking. In Proceedings of the The Semantic Web–ISWC 2013: 12th International Semantic Web Conference, Sydney, NSW, Australia, 21–25 October 2013; Proceedings, Part II 12. Springer: Berlin/Heidelberg, Germany, 2013; pp. 326–342. [Google Scholar]
- Le Phuoc, D.; Dao-Tran, M.; Le Tuan, A.; Duc, M.N.; Hauswirth, M. RDF stream processing with CQELS framework for real-time analysis. In Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems, Oslo, Norway, 29 June– 3 July 2015; pp. 285–292. [Google Scholar]
- Calbimonte, J.P. Linked data notifications for RDF streams. In Proceedings of the Web Stream Processing Workshop (WSP 2017) and the 2nd International Workshop on Ontology Modularity, Contextuality, and Evolution (WOMoCoE 2017) Co-Located with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, 22 October 2017. [Google Scholar]
- Mauri, A.; Calbimonte, J.P.; Dell’Aglio, D.; Balduini, M.; Brambilla, M.; Della Valle, E.; Aberer, K. TripleWave: Spreading RDF streams on the web. In Proceedings of the The Semantic Web–ISWC 2016: 15th International Semantic Web Conference, Kobe, Japan, 17–21 October 2016; Proceedings, Part II 15. Springer: Berlin/Heidelberg, Germany, 2016; pp. 140–149. [Google Scholar]
- Wu, J.; Orlandi, F.; O’Sullivan, D.; Dev, S. A workflow to convert live atmospheric sensor data into linked data. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: New York, NY, USA, 2022; pp. 4086–4089. [Google Scholar]
- Tappolet, J.; Bernstein, A. Applied temporal RDF: Efficient temporal querying of RDF data with SPARQL. In Proceedings of the European Semantic Web Conference, Crete, Greece, 31 May–4 June 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 308–322. [Google Scholar]
- RDF Stream Processing Community Group. RSP Data Model. Draft community group report, W3C RSP Community Group. Available online: https://streamreasoning.org/RSP-QL/Abstract%20Syntax%20and%20Semantics%20Document/ (accessed on 17 April 2024).
- Barbieri, D.F.; Valle, E. A proposal for publishing data streams as Linked Data. In Proceedings of the Linked Data on the Web Workshop, Raleigh, NC, USA, 27 April 2010. [Google Scholar]
- Rodrıguez, A.; McGrath, R.; Liu, Y.; Myers, J.; Urbana-Champaign, I. Semantic management of streaming data. Proc. Semant. Sens. Netw. 2009, 80, 80–95. [Google Scholar]
- Tommasini, R.; Sedira, Y.A.; Dell’Aglio, D.; Balduini, M.; Ali, M.I.; Le Phuoc, D.; Della Valle, E.; Calbimonte, J.P. VoCaLS: Vocabulary and catalog of linked streams. In Proceedings of the The Semantic Web–ISWC 2018: 17th International Semantic Web Conference, Monterey, CA, USA, 8–12 October 2018; Proceedings, Part II 17. Springer: Berlin/Heidelberg, Germany, 2018; pp. 256–272. [Google Scholar]
- Haesendonck, G.; Maroy, W.; Heyvaert, P.; Verborgh, R.; Dimou, A. Parallel RDF generation from heterogeneous big data. In Proceedings of the International Workshop on Semantic Big Data, Amsterdam, The Netherlands, 5 July 2019; pp. 1–6. [Google Scholar]
- Dimou, A.; Vander Sande, M.; Colpaert, P.; Verborgh, R.; Mannens, E.; Van de Walle, R. RML: A generic language for integrated RDF mappings of heterogeneous data. Ldow 2014, 8, 1184. [Google Scholar]
- CARML Contributors. CARML: A Pretty Sweet RML Engine, for RDF. 2023. Available online: https://github.com/carml/carml (accessed on 17 April 2024).
- Eclipse Foundation, Inc. Parsing and Writing RDF with Rio. 2023. Available online: https://rdf4j.org/documentation/programming/rio/ (accessed on 17 April 2024).
- Szmeja, P. ASSIST-IoT Semantic Annotation Enabler. 2023. Available online: https://github.com/assist-iot/semantic_annotation (accessed on 17 April 2024).
- Szmeja, P.; Fornés-Leal, A.; Lacalle, I.; Palau, C.E.; Ganzha, M.; Pawłowski, W.; Paprzycki, M.; Schabbink, J. ASSIST-IoT: A modular implementation of a reference architecture for the next generation Internet of Things. Electronics 2023, 12, 854. [Google Scholar] [CrossRef]
- Lefrançois, M.; Zimmermann, A.; Bakerally, N. Flexible RDF generation from RDF and heterogeneous data sources with SPARQL-Generate. In Proceedings of the European Knowledge Acquisition Workshop, Bologna, Italy, 19–23 November 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 131–135. [Google Scholar]
- Apache Software Foundation. Working with RDF Streams in Apache Jena. 2023. Available online: https://jena.apache.org/documentation/io/streaming-io.html (accessed on 17 April 2024).
- Ganzha, M.; Paprzycki, M.; Pawłowski, W.; Szmeja, P.; Wasielewska, K. Streaming semantic translations. In Proceedings of the 2017 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 19–21 October 2017; IEEE: New York, NY, USA, 2017; pp. 1–8. [Google Scholar]
- Morsey, M.; Lehmann, J.; Auer, S.; Stadler, C.; Hellmann, S. DBpedia and the live extraction of structured data from Wikipedia. Program 2012, 46, 157–181. [Google Scholar] [CrossRef]
- Le-Phuoc, D.; Quoc, H.N.M.; Quoc, H.N.; Nhat, T.T.; Hauswirth, M. The graph of things: A step towards the live knowledge graph of connected things. J. Web Semant. 2016, 37, 25–35. [Google Scholar] [CrossRef]
- Tallon, J.; Webber, C. ActivityPub. W3C Recommendation, W3C. 2018. Available online: https://www.w3.org/TR/2018/REC-activitypub-20180123/ (accessed on 26 June 2024).
- Van Lancker, D.; Colpaert, P.; Delva, H.; Van de Vyvere, B.; Meléndez, J.R.; Dedecker, R.; Michiels, P.; Buyle, R.; De Craene, A.; Verborgh, R. Publishing base registries as linked data event streams. In Proceedings of the International Conference on Web Engineering, Biarritz, France, 18–21 May 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 28–36. [Google Scholar]
- Le-Tuan, A.; Franzreb, C.; Le Phuoc, D.; Schimmler, S.; Hauswirth, M. Towards Building Live Open Scientific Knowledge Graphs. In Proceedings of the Companion Proceedings of the Web Conference, Lyon, France, 25–29 April 2022; pp. 443–447. [Google Scholar]
- Zimmermann, A. RDF 1.1: On Semantics of RDF Datasets. W3C Note, W3C. 2014. Available online: https://www.w3.org/TR/2014/NOTE-rdf11-datasets-20140225/ (accessed on 28 June 2024).
- Hartig, O.; Champin, P.A.; Kellogg, G. RDF 1.2 Concepts and Abstract Syntax. W3C Working Draft, W3C. 2024. Available online: https://www.w3.org/TR/2024/WD-rdf12-concepts-20240416/ (accessed on 28 June 2024).
- Jupp, S.; Bechhofer, S.; Stevens, R. SKOS with OWL: Don’t be Full-ish! In Proceedings of the OWLED, Washington, DC, USA, 1–2 April 2008; Volume 432, p. 2009-2. [Google Scholar]
- Miles, A.; Matthews, B.; Wilson, M.; Brickley, D. SKOS core: Simple knowledge organisation for the web. In Proceedings of the International Conference on Dublin Core and Metadata Applications, Madrid, Spain, 12–15 September 2005; pp. 3–10. [Google Scholar]
- Singh, G.; Bhatia, S.; Mutharaju, R. OWL2Bench: A benchmark for OWL 2 reasoners. In Proceedings of the The Semantic Web–ISWC 2020: 19th International Semantic Web Conference, Athens, Greece, 2–6 November 2020; Proceedings, Part II 19. Springer: Berlin/Heidelberg, Germany, 2020; pp. 81–96. [Google Scholar]
- Horridge, M.; Drummond, N.; Goodwin, J.; Rector, A.L.; Stevens, R.; Wang, H. The Manchester OWL syntax. In Proceedings of the OWLed, Athens, GA, USA, 10–11 November 2006; Volume 216. [Google Scholar]
- Jackson, R.C.; Balhoff, J.P.; Douglass, E.; Harris, N.L.; Mungall, C.J.; Overton, J.A. ROBOT: A Tool for Automating Ontology Workflows. BMC Bioinform. 2019, 20, 407. [Google Scholar] [CrossRef] [PubMed]
- Browning, D.; Beltran, A.G.; Perego, A.; Winstanley, P.; Cox, S.; Albertoni, R. Data Catalog Vocabulary (DCAT)—Version 3. W3C Working Draft, W3C. 2023. Available online: https://www.w3.org/TR/2023/WD-vocab-dcat-3-20230307/ (accessed on 28 June 2024).
- Williams, G. SPARQL 1.1 Service Description. W3C Recommendation, W3C. 2013. Available online: https://www.w3.org/TR/2013/REC-sparql11-service-description-20130321/ (accessed on 28 June 2024).
- Zhao, J.; Alexander, K.; Hausenblas, M.; Cyganiak, R. Describing Linked Datasets with the VoID Vocabulary. W3C Note, W3C. 2011. Available online: https://www.w3.org/TR/2011/NOTE-void-20110303/ (accessed on 28 June 2024).
- Garijo, D.; Poveda-Villalón, M. Best Practices for Implementing FAIR Vocabularies and Ontologies on the Web. In Applications and Practices in Ontology Design, Extraction, and Reasoning; IOS Press: Amsterdam, The Netherlands, 2020; pp. 39–54. [Google Scholar]
- Sowiński, P. RDF-STaX/rdf-stax.github.io. 2024. Available online: https://zenodo.org/records/11476591 (accessed on 28 June 2024).
- Frey, J.; Streitmatter, D.; Götz, F.; Hellmann, S.; Arndt, N. DBpedia Archivo: A web-scale interface for ontology archiving under consumer-oriented aspects. In Proceedings of the Semantic Systems. In the Era of Knowledge Graphs: 16th International Conference on Semantic Systems, SEMANTiCS 2020, Amsterdam, The Netherlands, 7–10 September 2020; Proceedings 16. Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 19–35. [Google Scholar]
- Vandenbussche, P.Y.; Atemezing, G.A.; Poveda-Villalón, M.; Vatant, B. Linked Open Vocabularies (LOV): A gateway to reusable semantic vocabularies on the Web. Semant. Web 2017, 8, 437–452. [Google Scholar] [CrossRef]
- Zablith, F.; Antoniou, G.; d’Aquin, M.; Flouris, G.; Kondylakis, H.; Motta, E.; Plexousakis, D.; Sabou, M. Ontology evolution: A process-centric survey. Knowl. Eng. Rev. 2015, 30, 45–75. [Google Scholar] [CrossRef]
- Sowiński, P.; Ganzha, M.; Paprzycki, M. RiverBench: An Open RDF Streaming Benchmark Suite. arXiv 2023, arXiv:2305.06226. [Google Scholar]
- Knublauch, H.; Kontokostas, D. Shapes Constraint Language (SHACL). W3C Recommendation, W3C. 2017. Available online: https://www.w3.org/TR/2017/REC-shacl-20170720/ (accessed on 28 June 2024).
- Kuhn, T.; Barbano, P.E.; Nagy, M.L.; Krauthammer, M. Broadening the scope of nanopublications. In Proceedings of the The Semantic Web: Semantics and Big Data: 10th International Conference, ESWC 2013, Montpellier, France, 26–30 May 2013; Proceedings 10. Springer: Berlin/Heidelberg, Germany, 2013; pp. 487–501. [Google Scholar]
- Kuhn, T.; Taelman, R.; Emonet, V.; Antonatos, H.; Soiland-Reyes, S.; Dumontier, M. Semantic micro-contributions with decentralized nanopublication services. PeerJ Comput. Sci. 2021, 7, e387. [Google Scholar] [CrossRef]
- Wijkstra, M.; Lek, T.; Kuhn, T.; Welbers, K.; Steijaert, M. Living literature reviews. In Proceedings of the 11th Knowledge Capture Conference, Virtual Event, 2–3 December 2021; pp. 241–248. [Google Scholar]
- RDFLib Contributors. RDFLib 7.0.0. Available online: https://rdflib.readthedocs.io/en/stable/ (accessed on 17 April 2024).
- Sowiński, P.; Wasielewska-Michniewska, K.; Ganzha, M.; Paprzycki, M.; Bădică, C. Ontology Reuse: The Real Test of Ontological Design. In Proceedings of the New Trends in Intelligent Software Methodologies, Tools and Techniques, Kitakyushu, Japan, 20–22 September 2022; IOS Press: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Fokoue, A.; Wu, Z.; Motik, B.; Horrocks, I.; Grau, B.C. OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommendation, W3C. 2012. Available online: https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/ (accessed on 17 April 2024).
- Glimm, B.; Horrocks, I.; Motik, B.; Stoilos, G.; Wang, Z. HermiT: An OWL 2 Reasoner. J. Autom. Reason. 2014, 53, 245–269. [Google Scholar] [CrossRef]
- Poveda-Villalón, M.; Gómez-Pérez, A.; Suárez-Figueroa, M.C. OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for Ontology Evaluation. Int. J. Semant. Web Inf. Syst. 2014, 10, 7–34. [Google Scholar] [CrossRef]
- Poveda-Villalón, M.; Espinoza-Arias, P.; Garijo, D.; Corcho, O. Coming to terms with FAIR ontologies. In Proceedings of the International Conference on Knowledge Engineering and Knowledge Management, Bolzano, Italy, 16–20 September 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 255–270. [Google Scholar]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- Garijo, D.; Corcho, O.; Poveda-Villalón, M. FOOPS!: An Ontology Pitfall Scanner for the FAIR principles. In Proceedings of the ISWC (Posters/Demos/Industry), Virtual Conference, 24–28 October 2021. [Google Scholar]
Stream type | Uses |
---|---|
RDF graph stream | ActivityPub [55], DBpedia-Live [53], ERI (blocks) [10], GoT [54], IPSM (logical level) [52], Jelly (stream frames) [6], Keskisärkkä and Blomqvist [15], Live open scientific knowledge graphs [57], RDF EXI [24], RDSZ [23], RSP Data Model (can be consumed) † [40], RSP4J YASPER (can be consumed) [33], S-HDT [22], VoCaLS [43] |
RDF subjectgraph stream | ERI (subject–molecule stream, only within a block) [10], LDES [56], TA-RDF [42], Stream Containers [14] |
RDF dataset stream | IPSM (output) [52], Jelly (stream frames) [6], RMLStreamer [11,44], RSP Data Model (can be consumed) † [40], Semantic Annotation enabler [48] |
RDF namedgraph stream | RSP Data Model (can be consumed) † [40] |
Timestamped RDFnamed graph stream | Barbieri and Della Valle ‡ [41], Linked Data Notifications for RDF streams [36], RSP Data Model [40], Tappolet and Bernstein [39], TripleWave [37], Wu et al. [38] |
Flat RDFtriple stream | Apache Jena RIOT [51], ERI (high level) [10], Groppe et al. [25], Jelly (high level) [6], Keskisärkkä and Blomqvist (mentioned) [15], RDF4J Rio [47], RSP4J YASPER (can consume) [33], SPARQL-Generate [50], VoCaLS [43] |
Flat RDFquad stream | Apache Jena RIOT [51], CARML [46], Jelly (high level) [6], RDF4J Rio [47] |
# | Competency Question |
---|---|
CQ1.1 | What are the names and descriptions of all RDF stream types? |
CQ1.2 | What is the definition for each stream type? |
CQ1.3 | What is the type of element of each concrete stream type? Provide additional references to external sources for each element type, if available. |
CQ1.4 | How can each of the concrete stream types be used? Provide a link to one example for each. |
CQ1.5 | What are the corresponding terms from other ontologies to those defined in the RDF-STaX ontology? |
# | Competency Question |
---|---|
CQ2.1 | Which concrete stream types can be viewed as generalizations of other stream types? |
CQ2.2 | Which concrete stream types can be trivially extended (by assuming the default graph) into other stream types? |
CQ2.3 | Which concrete stream types can be flattened into other stream types? |
CQ2.4 | Which concrete stream types can be grouped to obtain other stream types? |
# | Competency Question |
---|---|
CQ3.1 | What are the taxonomical parents of each stream type, listed in order? |
CQ3.2 | Is there any stream type that is a taxonomical parent or child of itself? |
CQ3.3 | Which conversions between concrete stream types cannot be performed in any trivial way (grouping, flattening, extending)? Allow for multiple trivial transformations in series and take into account the taxonomical structure. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowiński, P.; Szmeja, P.; Ganzha, M.; Paprzycki, M. RDF Stream Taxonomy: Systematizing RDF Stream Types in Research and Practice. Electronics 2024, 13, 2558. https://doi.org/10.3390/electronics13132558
Sowiński P, Szmeja P, Ganzha M, Paprzycki M. RDF Stream Taxonomy: Systematizing RDF Stream Types in Research and Practice. Electronics. 2024; 13(13):2558. https://doi.org/10.3390/electronics13132558
Chicago/Turabian StyleSowiński, Piotr, Paweł Szmeja, Maria Ganzha, and Marcin Paprzycki. 2024. "RDF Stream Taxonomy: Systematizing RDF Stream Types in Research and Practice" Electronics 13, no. 13: 2558. https://doi.org/10.3390/electronics13132558
APA StyleSowiński, P., Szmeja, P., Ganzha, M., & Paprzycki, M. (2024). RDF Stream Taxonomy: Systematizing RDF Stream Types in Research and Practice. Electronics, 13(13), 2558. https://doi.org/10.3390/electronics13132558