Design of Plasmon Absorbing Structure Suitable for Super High Frequency
Abstract
:1. Introduction
2. Theory and Design
2.1. Presentation of the Proposed Structure
2.2. Design Principles
3. Analysis and Discussion
3.1. Two-Dimensional Absorbing Structure
3.2. Three-Dimensional Absorbing Structure
4. Experimental Measurement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, T.D. Frequency Selective Surface and Grid Array; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1995. [Google Scholar]
- Sabata, A.D.; Matekovits, L.; Buta, A.; Dassano, G.; Silaghi, A. Frequency selective surface for ultra-wide band filtering and shielding. Sensors 2022, 22, 1896. [Google Scholar] [CrossRef] [PubMed]
- Kiani, G.I.; Ford, K.L.; Esselle, K.P.; Weily, A.R.; Panagamuwa, C.J. Oblique incidence performance of a novel frequency selective surface absorber. IEEE Trans. Antennas Propag. 2007, 55, 2931–2934. [Google Scholar] [CrossRef]
- Lin, B.; Zhao, S.; Wei, W.; Da, X.; Zhen, Q.; Zhang, H.; Zhu, H. Design of a tunable frequency selective surface absorber as a loaded receiving antenna array. Chin. Phys. B 2014, 23, 256–260. [Google Scholar] [CrossRef]
- Munk, B.A. Frequency Selective Surfaces: Theory and Design; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Bakshi, S.C.; Mitra, D.; Ghosh, S. A frequency selective surface based reconfigurable rasorber with switchable transmission/reflection band. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 29–33. [Google Scholar] [CrossRef]
- Chen, Q.; Fu, Y. A planar stealthy antenna radome using absorptive frequency selective surface. Microw. Opt. Technol. Lett. 2014, 56, 1788–1792. [Google Scholar] [CrossRef]
- Chen, Q.; Bai, J.; Chen, L.; Fu, Y. A miniaturized absorptive frequency selective surface. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 80–83. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, S.; Kong, X.; Bian, B. A broadband miniaturized ultra-thin tri-band bandpass fss with triangular layout. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, 21837. [Google Scholar] [CrossRef]
- Deng, G.; Yang, J.; Yin, Z. Broadband terahertz metamaterial absorber based on tantalum nitride. Appl. Opt. 2017, 56, 2449–2454. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, P.; Gong, S.; Lu, B.; Wan, T. Compact angularly stable frequency selective surface using hexagonal fractal configurations. Microw. Opt. Technol. Lett. 2010, 51, 2541–2544. [Google Scholar] [CrossRef]
- Dickie, R.; Cahill, R.; Gamble, H.; Fusco, V.; Schuchinsky, A.; Grant, N. Spatial demultiplexing in the sub-millimeter wave band using multlayer free-standing frequency selective surfaces. IEEE Trans. Antennas Propag. 2005, 53, 1904–1911. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yoo, Y.J.; Hwang, J.S.; Lee, Y.P. Ultra-broadband microwave metamaterial absorber based on resistive sheets. J. Opt. 2017, 19, 015103. [Google Scholar] [CrossRef]
- Lan, H.; Li, Z.; Weng, X.; Qi, L.; Li, K.; Zhou, Z.; Wu, X.; Bi, M. Low-frequency broadband multilayer microwave metamaterial absorber based on resistive frequency selective surfaces. Appl. Opt. 2023, 62, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, W.; Huang, L.; Ma, Y.; Yuan, N. Design of dual-absorptive-bands frequency selective rasorber with minkowski loop arrays. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1843–1847. [Google Scholar] [CrossRef]
- Shang, Y.; Shen, Z.; Xiao, S. Frequency-selective rasorber based on square-loop and cross-dipole arrays. IEEE Trans. Antennas Propag. 2014, 62, 5581–5589. [Google Scholar] [CrossRef]
- Omar, A.A.; Shen, Z.; Hao, H. Absorptive frequency-selective reflection and transmission structures. IEEE Trans. Antennas Propag. 2017, 65, 6173–6178. [Google Scholar] [CrossRef]
- Sheng, X.; Gao, X.; Liu, N. Design of frequency selective rasorber with wide transmission/absorption bands. J. Phys. D Appl. Phys. 2020, 53, 09LT01. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, Q.; Fu, J.; Chen, W.; Lv, B.; Song, M.; Denidni, T.A. A high-transmittance frequency-selective rasorber based on dipole arrays. IEEE Access 2018, 6, 31367–31374. [Google Scholar] [CrossRef]
- Chen, Q.; Sang, D.; Guo, M.; Fu, Y. Miniaturized frequency-selective rasorber with a wide transmission band using circular spiral resonator. IEEE Trans. Antennas Propag. 2019, 67, 1045–1052. [Google Scholar] [CrossRef]
- Huang, H.; Shen, Z. Absorptive frequency-selective transmission structure with square-loop hybrid resonator. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3212–3215. [Google Scholar] [CrossRef]
- Fang, J.; Li, H.; Cao, Q.; Wang, Y. Study of an optically controlled active frequency selective surface. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1707–1711. [Google Scholar] [CrossRef]
- Rashid, A.K.; Shen, Z. A novel band-reject frequency selective surface with pseudo-elliptic response. IEEE Trans. Antennas Propag. 2010, 58, 1220–1226. [Google Scholar] [CrossRef]
- Rashid, A.K.; Shen, Z.; Aditya, S. Wideband microwave absorber based on a two-dimensional periodic array of microstrip lines. IEEE Trans. Antennas Propag. 2010, 58, 3913–3922. [Google Scholar] [CrossRef]
- Omar, A.A.; Shen, Z. Double-sided parallel-strip line resonator for dual-polarized 3-D frequency-selective structure and absorber. IEEE Trans. Microw. Theory Tech. 2017, 65, 3744–3752. [Google Scholar] [CrossRef]
- Yu, Y.; Gong, D.; Xie, G.; Liu, Q.; Peng, L. Wideband three-dimensional absorber based on notch-slot resonator with lossy coupled microstrip line. Appl. Sci. 2022, 12, 11082. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Chen, C.; Sun, Y.; Xu, B.; Liu, L.; Gu, C. Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons. Appl. Opt. 2016, 55, 10323–10328. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Xiao, L.; Xiao, B.; Yu, J. Programmable bandstop filter based on spoof surface plasmon polaritons. Appl. Opt. 2022, 61, 5251–5259. [Google Scholar] [CrossRef]
- Martin-Cano, D.; Nesterov, M.L.; Fernandez-Dominguez, A.I.; Garcia-Vidal, F.J.; Martin-Moreno, L.; Moreno, E. Domino plasmons for subwavelength terahertz circuitry. Opt. Express 2010, 18, 754–764. [Google Scholar] [CrossRef]
- Ng, C.; Wesemann, L.; Panchenko, E.; Song, J.; Davis, T.J.; Roberts, A.; Gomez, D.E. Plasmonic near-complete optical absorption and its applications. Adv. Opt. Mater. 2019, 7, 1801660. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Liu, X.; Chen, J.; Fu, G.; Liu, Z. Large-area, low-cost, ultra-broadband, infrared perfect absorbers by coupled plasmonic-photonic micro-cavities. Sol. Energy Mater. Sol. Cells 2018, 186, 142–148. [Google Scholar] [CrossRef]
- Gao, Z.; Fan, Q.; Xu, C.; Tian, X.; Tian, C.; Wang, J.; Qu, S. Compatible stealth design of infrared and radar based on plasmonic absorption structure. Opt. Express 2021, 18, 28767–28777. [Google Scholar] [CrossRef]
Absorbing Structure in Reference | Absorption Bandwidth 1/GHz | Maximum Angle of Incidence | Cell Size/mm | |
---|---|---|---|---|
2-D | [6] | 3.5–11.5 | Not reported | 20 × 20 × 8 |
[7] | 3–9 | 45° | Top: 36 × 36; Back: 54 × 54; h = 20 | |
[8] | 3–9 | 30° | 20 × 20 × 8 | |
This work | 6.3–14.5 | 50° | 10 × 10 × 10 | |
3-D | [24] | 1.5–5.5 | 30° | 20 × 10 × 11.5 |
[25] | 1.5–10.5 | 45° | 24 × 24 × 20 | |
[26] | 2.5–11 | 40° | 11 × 11 × 15 | |
This work | 4.3–21.5 | 50° | 10 × 10 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Yang, Q. Design of Plasmon Absorbing Structure Suitable for Super High Frequency. Electronics 2023, 12, 2121. https://doi.org/10.3390/electronics12092121
Bai J, Yang Q. Design of Plasmon Absorbing Structure Suitable for Super High Frequency. Electronics. 2023; 12(9):2121. https://doi.org/10.3390/electronics12092121
Chicago/Turabian StyleBai, Jin, and Qingzhen Yang. 2023. "Design of Plasmon Absorbing Structure Suitable for Super High Frequency" Electronics 12, no. 9: 2121. https://doi.org/10.3390/electronics12092121
APA StyleBai, J., & Yang, Q. (2023). Design of Plasmon Absorbing Structure Suitable for Super High Frequency. Electronics, 12(9), 2121. https://doi.org/10.3390/electronics12092121