Design of Plasmon Absorbing Structure Suitable for Super High Frequency
Abstract
1. Introduction
2. Theory and Design
2.1. Presentation of the Proposed Structure
2.2. Design Principles
3. Analysis and Discussion
3.1. Two-Dimensional Absorbing Structure
3.2. Three-Dimensional Absorbing Structure
4. Experimental Measurement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, T.D. Frequency Selective Surface and Grid Array; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1995. [Google Scholar]
- Sabata, A.D.; Matekovits, L.; Buta, A.; Dassano, G.; Silaghi, A. Frequency selective surface for ultra-wide band filtering and shielding. Sensors 2022, 22, 1896. [Google Scholar] [CrossRef] [PubMed]
- Kiani, G.I.; Ford, K.L.; Esselle, K.P.; Weily, A.R.; Panagamuwa, C.J. Oblique incidence performance of a novel frequency selective surface absorber. IEEE Trans. Antennas Propag. 2007, 55, 2931–2934. [Google Scholar] [CrossRef]
- Lin, B.; Zhao, S.; Wei, W.; Da, X.; Zhen, Q.; Zhang, H.; Zhu, H. Design of a tunable frequency selective surface absorber as a loaded receiving antenna array. Chin. Phys. B 2014, 23, 256–260. [Google Scholar] [CrossRef]
- Munk, B.A. Frequency Selective Surfaces: Theory and Design; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Bakshi, S.C.; Mitra, D.; Ghosh, S. A frequency selective surface based reconfigurable rasorber with switchable transmission/reflection band. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 29–33. [Google Scholar] [CrossRef]
- Chen, Q.; Fu, Y. A planar stealthy antenna radome using absorptive frequency selective surface. Microw. Opt. Technol. Lett. 2014, 56, 1788–1792. [Google Scholar] [CrossRef]
- Chen, Q.; Bai, J.; Chen, L.; Fu, Y. A miniaturized absorptive frequency selective surface. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 80–83. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, S.; Kong, X.; Bian, B. A broadband miniaturized ultra-thin tri-band bandpass fss with triangular layout. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, 21837. [Google Scholar] [CrossRef]
- Deng, G.; Yang, J.; Yin, Z. Broadband terahertz metamaterial absorber based on tantalum nitride. Appl. Opt. 2017, 56, 2449–2454. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, P.; Gong, S.; Lu, B.; Wan, T. Compact angularly stable frequency selective surface using hexagonal fractal configurations. Microw. Opt. Technol. Lett. 2010, 51, 2541–2544. [Google Scholar] [CrossRef]
- Dickie, R.; Cahill, R.; Gamble, H.; Fusco, V.; Schuchinsky, A.; Grant, N. Spatial demultiplexing in the sub-millimeter wave band using multlayer free-standing frequency selective surfaces. IEEE Trans. Antennas Propag. 2005, 53, 1904–1911. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yoo, Y.J.; Hwang, J.S.; Lee, Y.P. Ultra-broadband microwave metamaterial absorber based on resistive sheets. J. Opt. 2017, 19, 015103. [Google Scholar] [CrossRef]
- Lan, H.; Li, Z.; Weng, X.; Qi, L.; Li, K.; Zhou, Z.; Wu, X.; Bi, M. Low-frequency broadband multilayer microwave metamaterial absorber based on resistive frequency selective surfaces. Appl. Opt. 2023, 62, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, W.; Huang, L.; Ma, Y.; Yuan, N. Design of dual-absorptive-bands frequency selective rasorber with minkowski loop arrays. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1843–1847. [Google Scholar] [CrossRef]
- Shang, Y.; Shen, Z.; Xiao, S. Frequency-selective rasorber based on square-loop and cross-dipole arrays. IEEE Trans. Antennas Propag. 2014, 62, 5581–5589. [Google Scholar] [CrossRef]
- Omar, A.A.; Shen, Z.; Hao, H. Absorptive frequency-selective reflection and transmission structures. IEEE Trans. Antennas Propag. 2017, 65, 6173–6178. [Google Scholar] [CrossRef]
- Sheng, X.; Gao, X.; Liu, N. Design of frequency selective rasorber with wide transmission/absorption bands. J. Phys. D Appl. Phys. 2020, 53, 09LT01. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, Q.; Fu, J.; Chen, W.; Lv, B.; Song, M.; Denidni, T.A. A high-transmittance frequency-selective rasorber based on dipole arrays. IEEE Access 2018, 6, 31367–31374. [Google Scholar] [CrossRef]
- Chen, Q.; Sang, D.; Guo, M.; Fu, Y. Miniaturized frequency-selective rasorber with a wide transmission band using circular spiral resonator. IEEE Trans. Antennas Propag. 2019, 67, 1045–1052. [Google Scholar] [CrossRef]
- Huang, H.; Shen, Z. Absorptive frequency-selective transmission structure with square-loop hybrid resonator. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3212–3215. [Google Scholar] [CrossRef]
- Fang, J.; Li, H.; Cao, Q.; Wang, Y. Study of an optically controlled active frequency selective surface. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1707–1711. [Google Scholar] [CrossRef]
- Rashid, A.K.; Shen, Z. A novel band-reject frequency selective surface with pseudo-elliptic response. IEEE Trans. Antennas Propag. 2010, 58, 1220–1226. [Google Scholar] [CrossRef]
- Rashid, A.K.; Shen, Z.; Aditya, S. Wideband microwave absorber based on a two-dimensional periodic array of microstrip lines. IEEE Trans. Antennas Propag. 2010, 58, 3913–3922. [Google Scholar] [CrossRef]
- Omar, A.A.; Shen, Z. Double-sided parallel-strip line resonator for dual-polarized 3-D frequency-selective structure and absorber. IEEE Trans. Microw. Theory Tech. 2017, 65, 3744–3752. [Google Scholar] [CrossRef]
- Yu, Y.; Gong, D.; Xie, G.; Liu, Q.; Peng, L. Wideband three-dimensional absorber based on notch-slot resonator with lossy coupled microstrip line. Appl. Sci. 2022, 12, 11082. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Chen, C.; Sun, Y.; Xu, B.; Liu, L.; Gu, C. Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons. Appl. Opt. 2016, 55, 10323–10328. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Xiao, L.; Xiao, B.; Yu, J. Programmable bandstop filter based on spoof surface plasmon polaritons. Appl. Opt. 2022, 61, 5251–5259. [Google Scholar] [CrossRef]
- Martin-Cano, D.; Nesterov, M.L.; Fernandez-Dominguez, A.I.; Garcia-Vidal, F.J.; Martin-Moreno, L.; Moreno, E. Domino plasmons for subwavelength terahertz circuitry. Opt. Express 2010, 18, 754–764. [Google Scholar] [CrossRef]
- Ng, C.; Wesemann, L.; Panchenko, E.; Song, J.; Davis, T.J.; Roberts, A.; Gomez, D.E. Plasmonic near-complete optical absorption and its applications. Adv. Opt. Mater. 2019, 7, 1801660. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Liu, X.; Chen, J.; Fu, G.; Liu, Z. Large-area, low-cost, ultra-broadband, infrared perfect absorbers by coupled plasmonic-photonic micro-cavities. Sol. Energy Mater. Sol. Cells 2018, 186, 142–148. [Google Scholar] [CrossRef]
- Gao, Z.; Fan, Q.; Xu, C.; Tian, X.; Tian, C.; Wang, J.; Qu, S. Compatible stealth design of infrared and radar based on plasmonic absorption structure. Opt. Express 2021, 18, 28767–28777. [Google Scholar] [CrossRef]
Absorbing Structure in Reference | Absorption Bandwidth 1/GHz | Maximum Angle of Incidence | Cell Size/mm | |
---|---|---|---|---|
2-D | [6] | 3.5–11.5 | Not reported | 20 × 20 × 8 |
[7] | 3–9 | 45° | Top: 36 × 36; Back: 54 × 54; h = 20 | |
[8] | 3–9 | 30° | 20 × 20 × 8 | |
This work | 6.3–14.5 | 50° | 10 × 10 × 10 | |
3-D | [24] | 1.5–5.5 | 30° | 20 × 10 × 11.5 |
[25] | 1.5–10.5 | 45° | 24 × 24 × 20 | |
[26] | 2.5–11 | 40° | 11 × 11 × 15 | |
This work | 4.3–21.5 | 50° | 10 × 10 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Yang, Q. Design of Plasmon Absorbing Structure Suitable for Super High Frequency. Electronics 2023, 12, 2121. https://doi.org/10.3390/electronics12092121
Bai J, Yang Q. Design of Plasmon Absorbing Structure Suitable for Super High Frequency. Electronics. 2023; 12(9):2121. https://doi.org/10.3390/electronics12092121
Chicago/Turabian StyleBai, Jin, and Qingzhen Yang. 2023. "Design of Plasmon Absorbing Structure Suitable for Super High Frequency" Electronics 12, no. 9: 2121. https://doi.org/10.3390/electronics12092121
APA StyleBai, J., & Yang, Q. (2023). Design of Plasmon Absorbing Structure Suitable for Super High Frequency. Electronics, 12(9), 2121. https://doi.org/10.3390/electronics12092121