A Method to Reduce the Intra-Frame Prediction Complexity of HEVC Based on D-CNN
Abstract
:1. Introduction
2. The Proposed D-CNN of CU Partition Method
2.1. Proposed Network Structure
2.2. Loss Function
2.3. Threshold Optimization Decision
3. Results
3.1. Experimental Configuration
3.2. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiegand, T.; Sullivan, G.J.; Bjontegaard, G.; Luthra, A. Overview of the h. 264/avc video coding standard. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 560–576. [Google Scholar] [CrossRef]
- Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Bross, B.; Wang, Y.K.; Ye, Y.; Liu, S.; Chen, J.; Sullivan, G.J.; Ohm, J.R. Overview of the versatile video coding (V-VC) standard and its applications. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3736–3764. [Google Scholar] [CrossRef]
- Wu, S.; Shi, J.; Chen, Z. HG-FCN: Hierarchical Grid Fully Convolutional Network for Fast VVC Intra Coding. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5638–5649. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Fang, Y.; Peng, H.; Ling, N. Bagged Tree and ResNet-Based Joint End-to-End Fast CTU Partition Decision Algorithm for Video Intra Coding. Electronics 2022, 11, 1264. [Google Scholar] [CrossRef]
- Video Developer Report 2021. Available online: https://go.bitmovin.com/video-developer-report (accessed on 12 January 2022).
- Kim, I.K.; Min, J.; Lee, T.; Han, W.J.; Park, J. Block Partitioning Structure in the HEVC Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1697–1706. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, C.; Xu, M.; Li, S. Inter-Block Dependency-Based CTU Level Rate Control for HEVC. IEEE Trans. Broadcast. 2020, 66, 113–126. [Google Scholar] [CrossRef]
- Jamali, M.; Coulombe, S. Fast HEVC Intra Mode Decision Based on RDO Cost Prediction. IEEE Trans. Broadcast. 2019, 65, 109–122. [Google Scholar] [CrossRef]
- JCT-VC, Hm Software. Available online: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.5 (accessed on 20 August 2020).
- Fang, H.; Chen, H.; Chang, T. Fast intra prediction algorithm and design for High Efficiency Video Coding. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 1770–1773. [Google Scholar] [CrossRef]
- Kim, N.; Jeon, S.; Shim, H.J.; Jeon, B.; Lim, S.; Ko, H. Adaptive keypoint-based CU depth decision for HEVC intra coding. In Proceedings of the 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Nara, Japan, 1–3 June 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, M.T.; Zhao, D.; Gao, W. Fast intra-mode and CU size decision for HEVC. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 1714–1726. [Google Scholar] [CrossRef]
- Gu, J.; Tang, M.; Wen, J.; Han, Y. Adaptive intra candidate selection with early depth decision for fast intra prediction in HEVC. IEEE Signal. Process. Lett. 2018, 25, 159–163. [Google Scholar] [CrossRef]
- Fu, B.; Zhang, Q.Q.; Hu, J. Fast prediction mode selection and CU partition for hevc intra coding. IET Image Process. 2020, 14, 1892–1900. [Google Scholar] [CrossRef]
- Chen, F.; Jin, D.; Peng, Z.; Jiang, G.; Yu, M.; Chen, H. Fast intra coding algorithm for HEVC based on depth r-ange prediction and mode reduction. Multimed. Tools Appl. 2018, 77, 10. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Liu, D.; Wang, P.; Yang, L.T. An adaptive CU size decision algorithm for HEVC intra prediction based on complexity classification using machine learning. IEEE Trans. Circuits Syst. Video Technol. 2017, 29, 144–155. [Google Scholar] [CrossRef]
- Erabadda, B.; Mallikarachchi, T.; Hewage, C.; Fernando, A. Quality of Experience (QoE)-Aware Fast Coding Unit Size Selection for HEVC Intra-Prediction. Future Internet 2019, 11, 175. [Google Scholar] [CrossRef]
- Pakdaman, F.; Yu, L.; Hashemi, M.R.; Ghanbari, M.; Gabbouj, M. SVM based approach for complexity control of HEVC intra coding. Signal. Process. Image Commun. 2021, 93, 116177. [Google Scholar] [CrossRef]
- Liu, D.; Liu, X.; Li, Y. Fast CU Size Decisions for HEVC Intra Frame Coding Based on Support Vector Machines. In Proceedings of the 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, 14th Intl-Conf on Pervasive Intelligence and Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Auckland, New Zealand, 8–12 August 2016; pp. 594–597. [Google Scholar] [CrossRef]
- Amna, M.; Imen, W.; Soulef, B.; Fatma Ezahra, S. Machine Learning-Based approaches to reduce HEVC intra coding unit partition decision complexity. Multimed. Tools Appl. 2022, 81, 2777–2802. [Google Scholar] [CrossRef]
- Wang, S.H.; Zhu, Z.; Zhang, Y.-D. PSCNN: PatchShuffle convolutional neural network for COVID-19 explainable diagnosis. Front. Public. Health 2021, 9, 1593. [Google Scholar] [CrossRef]
- Wang, S.H.; Wu, K.; Chu, T.; Fernandes, S.L.; Zhou, Q.; Zhang, Y.D.; Sun, J. Sospcnn: Structurally optimized stochastic pooling convolutional neural network for tetralogy of fallot recognition. Wireless Communications and Mobile Computing. Wirel. Commun. Mob. Comput. 2021, 2021, 5792975. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Satapathy, S.; Zhu, L.Y.; Gorriz, J.M.; Wang, S. A seven-layer convolutional neural network for chest ct based covid-19 diagnosis using stochastic pooling. IEEE Sensors J. 2020, 22, 17573–17582. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Gao, Y.; Chen, S.; Ji, X.; Wang, D. CU partition mode decision for HEVC hardwired intra encoder using convolution neural network. IEEE Trans. Image Process. 2016, 25, 5088–5103. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Zhang, T.; Zhang, S.; Jiang, F.; Zuo, W.; Zhao, D. Convolutional neural networks based intra prediction for HEVC. In Proceedings of the 2017 Data Compression Conference (DCC), Snowbird, UT, USA, 4–7 April 2017; p. 436. [Google Scholar] [CrossRef]
- Schiopu, I.; Huang, H.; Munteanu, A. CNN-based intra-prediction for lossless HEVC. IEEE Trans. Circuits Syst. Video Technol. 2019, 99, 1816–1828. [Google Scholar] [CrossRef]
- Jin, Z.; An, P.; Shen, L.; Yang, C. CNN oriented fast QTBT partition algorithm for JVET intra coding. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Zhang, X.; Wang, S.; Ma, S. Fast QTBT partitioning decision for interframe coding with convolution neural network. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2550–2554. [Google Scholar] [CrossRef]
- Jamali, M.; Coulombe, S.; Sadreazami, H. CU Size Decision for Low Complexity HEVC Intra Coding based on Deep Reinforcement Learning. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and S-ystems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 586–591. [Google Scholar] [CrossRef]
- Amna, M.; Imen, W.; Ezahra, S.F. LeNet5-Based approach for fast intra coding. In Proceedings of the 2020 10th International Symposium on Signal, Image, Video and Communications (ISIVC), Saint-Etienne, France, 7–9 April 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Xu, M.; Li, T.; Wang, Z.; Deng, X.; Yang, R.; Guan, Z. Reducing complexity of HEVC: A deep learning approach. IEEE Trans. Image Process. 2018, 27, 5044–5059. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Tian, R.; Xu, M.; Kuo, C.J. Texture-Classification Accelerated CNN Scheme for Fast Intra CU Partition in HEVC. In Proceedings of the 2019 Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; pp. 241–249. [Google Scholar] [CrossRef]
- Galpin, F.; Racapé, F.; Jaiswal, S.; Bordes, P.; Le Léannec, F.; François, E. CNN-based driving of block partitioning for intra slices encoding. In Proceedings of the 2019 Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; pp. 162–171. [Google Scholar] [CrossRef]
- Zaki, F.; Mohamed, A.E.; Sayed, S.G. CtuNet: A Deep Learning-Based Framework for Fast CTU Partitioning of H265/HEVC Intra-coding. Ain Shams Eng. J. 2021, 12, 1859–1866. [Google Scholar] [CrossRef]
- Ren, W.; Su, J.; Sun, C.; Shi, Z. An IBP-CNN Based Fast Block Partition For Intra Prediction. In Proceedings of the 2019 Picture Coding Symposium (PCS), Ningbo, China, 12–15 November 2019. [Google Scholar] [CrossRef]
- Feng, A.; Gao, C.; Li, L.; Liu, D.; Wu, F. Cnn-Based Depth Map Prediction for Fast Block Partitioning in HEVC Intr-a Coding. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Imen, W.; Amna, M.; Fatma, B.; Ezahra, S.F.; Masmoudi, N. Fast HEVC intra-CU decision partition algorithm with modified LeNet-5 and AlexNet. Signal Image Video Process. 2022, 16, 1811–1819. [Google Scholar] [CrossRef]
- Yao, C.; Xu, C.; Liu, M. RDNet: Rate–Distortion-Based Coding Unit Partition Network for Intra-Prediction. Electronics 2022, 11, 916. [Google Scholar] [CrossRef]
- Ohm, J.R.; Sullivan, G.J.; Schwarz, H.; Tan, T.K.; Wiegand, T. Comparison of the coding efficiency of video coding standards—Including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1669–1684. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Jia, K.; Cui, T.; Liu, P.; Liu, C. Fast Prediction Algorithm in High Efficiency Video Coding Intra-mode Based on Deep Feature Learning. J. Electron. Inf. Technol. 2021, 43, 2023–2031. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 11534–11542. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar] [CrossRef]
- Xu, M.; Deng, X.; Li, S.; Wang, Z. Region-of-interest based conversational HEVC coding with hierarchical perception model of face. IEEE.J. Sel. Top. Signal Process. 2014, 8, 475–489. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467,2016. [Google Scholar] [CrossRef]
- CPH-Intra. Available online: https://github.com/HEVC-Projects/CPH (accessed on 3 October 2018).
- Grellert, M.; Bampi, S.; Correa, G.; Zatt, B.; Cruz, L.S. Learning-based complexity reduction and scaling for HEVC encoders. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 1208–1212. [Google Scholar] [CrossRef]
- Sze, V.; Budagavi, M.; Sullivan, G.J. High Efficiency Video Coding (HEVC): Algorithms and Architectures; Springer International Publishing: Cham, Switzerland, 2014; pp. 91–112. [Google Scholar] [CrossRef]
Layers | Output Size | Proposed CNN Configuration | ||
---|---|---|---|---|
Convolution | 16 × 16 | 4 × 4 conv, stride 4 | ||
Densely Connection Black (1) | 16 × 16 | |||
Convolution | 16 × 16 | 1 × 1 conv, stride 1 | ||
Max pooling | 8 × 8 | max pooling, stride 2 | ||
Densely Connection Black (2) | 8 × 8 | |||
Convolution | 8 × 8 | 1 × 1 conv, stride 1 | ||
Max pooling | 2 × 2 max pooling, stride 2 | |||
Densely Connection Black (3) | 4 × 4 | |||
ECA | 4 × 4 | —— | ||
Flatten | 1280 | —— | ||
Fully Connection Net (1) | —— | FC 1-1:64 | FC 2-1:128 | FC 3-1:256 |
Fully Connection Net (2) | —— | FC 1-2:48 | FC 2-2:96 | FC 3-2:192 |
Output | —— | FC 1-3:1 | FC 2-3:4 | FC 3-3:16 |
Operating System | Windows 11 |
---|---|
CPU | AMD Ryzen 7 5800H with Radeon Graphics @ 2.40 GHz |
GPU | NVIDIA GeForce RTX 3050 Laptop GPU |
RAM | 16 GB |
Class | Sequence | BD-BR (%) | BD-PSNR (dB) | ΔT (%) | |||
---|---|---|---|---|---|---|---|
QP = 22 | QP = 27 | QP = 32 | QP = 37 | ||||
A (2560 × 1600) | PeopleOnStreet | 1.99 | −0.113 | −59.08 | −62.16 | −61.96 | −64.01 |
Traffic | 2.12 | −0.115 | −61.49 | −65.75 | −68.08 | −71.12 | |
B (1920 × 1080) | BasketballDrive | 4.17 | −0.104 | −67.37 | −76.08 | −78.17 | −78.42 |
BQTerrace | 1.12 | −0.073 | −50.83 | −54.53 | −57.21 | −60.07 | |
Cactus | 1.89 | −0.072 | −55.27 | −63.57 | −66.44 | −72.92 | |
Kimono | 1.52 | −0.055 | −83.17 | −83.56 | −83.87 | −83.05 | |
ParkScene | 1.76 | −0.075 | −61.16 | −66.83 | −69.44 | −73.57 | |
C (832 × 480) | BasketballDrill | 2.72 | −0.131 | −39.75 | −51.23 | −58.75 | −66.92 |
BQMall | 1.12 | −0.070 | −45.09 | −50.29 | −52.96 | −57.36 | |
PartyScene | 0.32 | −0.025 | −45.88 | −47.42 | −49.47 | −53.47 | |
RaceHorses | 1.55 | −0.099 | −49.91 | −52.66 | −56.16 | −61.53 | |
D (416 240) | BasketballPass | 2.16 | −0.124 | −48.00 | −55.02 | −59.57 | −63.48 |
BlowingBubbles | 0.76 | −0.046 | −35.87 | −40.67 | −45.95 | −51.07 | |
BQSquare | 0.23 | −0.019 | −38.11 | −41.65 | −43.88 | −45.91 | |
RaceHorses | 0.92 | −0.064 | −41.03 | −46.32 | −49.65 | −53.35 | |
E (1280 × 720) | FourPeople | 2.56 | −0.149 | −59.62 | −63.91 | −65.36 | −67.86 |
Johnny | 3.07 | −0.127 | −70.78 | −73.42 | −74.19 | −75.52 | |
KritenAndSara | 2.52 | −0.130 | −67.46 | −70.92 | −71.50 | −73.12 | |
Average of Class A–E | 1.81 | −0.088 | −54.44 | −59.22 | −61.81 | −65.15 |
Class | Sequence | [16] | [20] | [25] | [39] | Proposed | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BD-BR (%) | BD- PSNR (dB) | (%) | BD-BR (%) | BD- PSNR (dB) | (%) | BD- BR | BD- PSNR (dB) | (%) | BD- BR | BD- PSNR (dB) | (%) | BD- BR | BD- PSNR (dB) | (%) | ||
A | PeopleOnStreet | 1.23 | −0.07 | −42.96 | 9.63 | −0.94 | −43.84 | 3.97 | −0.21 | −55.59 | 2.20 | −0.13 | −57.53 | 1.99 | −0.11 | −61.80 |
Traffic | 1.16 | −0.06 | −42.45 | 6.41 | −0.30 | −28.87 | 4.95 | −0.24 | −60.84 | 2.43 | −0.13 | −63.55 | 2.12 | −0.12 | −66.61 | |
Class A Average | 1.20 | −0.07 | −42.71 | 8.02 | −0.62 | −36.36 | 4.46 | −0.23 | −58.22 | 2.32 | −0.13 | −60.54 | 2.06 | −0.11 | −64.21 | |
B | BasketballDrive | 1.66 | −0.05 | −47.98 | 8.92 | −0.24 | −43.40 | 6.02 | −0.14 | −69.51 | 3.94 | −0.09 | −74.29 | 4.17 | −0.07 | −75.01 |
BQTerrace | 0.94 | −0.04 | −46.74 | 6.63 | −0.30 | −56.62 | 4.82 | −0.27 | −57.89 | 1.19 | −0.08 | −47.96 | 1.12 | −0.07 | −55.66 | |
Cactus | 1.20 | −0.04 | −44.70 | 7.53 | −0.25 | −43.51 | 6.02 | −0.21 | −62.98 | 1.95 | −0.08 | −52.72 | 1.89 | −0.06 | −64.55 | |
Kimono | 1.74 | −0.06 | −53.33 | 5.12 | −0.17 | −47.80 | 2.38 | −0.08 | −72.72 | 1.40 | −0.05 | −83.53 | 1.52 | −0.08 | −83.16 | |
ParkScene | 1.42 | −0.06 | −44.24 | 3.63 | −0.15 | −52.85 | 3.42 | −0.14 | −66.03 | 1.76 | −0.08 | −59.25 | 1.76 | −0.13 | −67.75 | |
Class B Average | 1.39 | −0.05 | −47.40 | 6.37 | −0.22 | −48.84 | 4.53 | −0.17 | −65.83 | 2.05 | −0.08 | −63.55 | 2.09 | −0.08 | −69.23 | |
C | BasketballDrill | 0.91 | −0.04 | −40.07 | 9.82 | −0.44 | −53.93 | 12.21 | −0.54 | −63.58 | 2.74 | −0.13 | −47.87 | 2.72 | −0.03 | −54.16 |
BQMall | 1.33 | −0.07 | −43.21 | 9.65 | −0.49 | −42.06 | 8.08 | −0.47 | −52.14 | 1.33 | −0.08 | −33.08 | 1.12 | −0.10 | −51.43 | |
PartyScene | 1.06 | −0.08 | −44.72 | 7.38 | −0.47 | −43.01 | 9.45 | −0.67 | −58.75 | 0.36 | −0.03 | −33.66 | 0.32 | −0.12 | −49.06 | |
RaceHorses | 0.99 | −0.05 | −45.13 | 7.22 | −0.38 | −44.59 | 4.42 | −0.26 | −58.19 | 1.66 | −0.11 | −36.28 | 1.55 | −0.05 | −55.07 | |
Class C Average | 1.07 | −0.06 | −43.28 | 8.51 | −0.45 | −45.90 | 8.54 | −0.49 | −58.17 | 1.52 | −0.09 | −37.72 | 1.43 | −0.08 | −52.43 | |
D | BasketballPass | 1.28 | −0.07 | −42.33 | 10.05 | −0.55 | −39.72 | 8.40 | −0.46 | −64.02 | 1.85 | −0.11 | −57.06 | 2.16 | −0.06 | −56.52 |
BlowingBubbles | 1.02 | −0.06 | −42.27 | 6.18 | −0.38 | −37.04 | 8.33 | −0.46 | −60.78 | 0.85 | −0.05 | −37.87 | 0.76 | −0.15 | −43.39 | |
BQSquare | 1.20 | −0.10 | −44.54 | 12.34 | −0.88 | −57.43 | 2.56 | −0.21 | −46.72 | 0.26 | −0.02 | −38.67 | 0.23 | −0.13 | −42.39 | |
RaceHorses | — | — | — | 8.84 | −0.49 | −40.23 | 4.95 | −0.32 | −57.29 | 0.98 | −0.07 | −42.99 | 0.92 | −0.13 | −47.59 | |
Class D Average | 1.17 | −0.08 | −43.05 | 9.35 | −0.58 | −43.61 | 6.06 | −0.36 | −57.20 | 0.99 | −0.06 | −44.15 | 1.02 | −0.06 | −47.47 | |
E | FourPeople | 1.87 | −0.08 | −43.44 | 9.08 | −0.48 | −36.22 | 8.00 | −0.44 | −61.54 | 2.91 | −0.17 | −64.20 | 2.56 | −0.11 | −64.19 |
Johnny | 1.87 | −0.07 | −52.49 | 12.18 | −0.47 | −63.55 | 7.96 | −0.31 | −66.55 | 3.42 | −0.14 | −77.55 | 3.07 | −0.12 | −73.48 | |
KritenAndSara | 1.85 | −0.09 | −48.27 | 13.35 | −0.63 | −57.51 | 5.48 | −0.27 | −64.72 | 2.66 | −0.14 | −74.00 | 2.52 | −0.10 | −70.75 | |
Class E Average | 1.86 | −0.08 | −48.07 | 11.54 | −0.53 | −52.43 | 7.15 | −0.34 | −64.27 | 3.00 | −0.15 | −71.92 | 2.72 | −0.14 | −69.47 | |
Average of Class A–E | 1.34 | −0.06 | −45.23 | 8.56 | −0.42 | −46.23 | 6.19 | −0.32 | −61.09 | 1.88 | −0.09 | −54.56 | 1.81 | −0.09 | −60.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wei, G.; Li, H.; Bui, T.; Zeng, Q.; Wang, R. A Method to Reduce the Intra-Frame Prediction Complexity of HEVC Based on D-CNN. Electronics 2023, 12, 2091. https://doi.org/10.3390/electronics12092091
Wang T, Wei G, Li H, Bui T, Zeng Q, Wang R. A Method to Reduce the Intra-Frame Prediction Complexity of HEVC Based on D-CNN. Electronics. 2023; 12(9):2091. https://doi.org/10.3390/electronics12092091
Chicago/Turabian StyleWang, Ting, Geng Wei, Huayu Li, ThiOanh Bui, Qian Zeng, and Ruliang Wang. 2023. "A Method to Reduce the Intra-Frame Prediction Complexity of HEVC Based on D-CNN" Electronics 12, no. 9: 2091. https://doi.org/10.3390/electronics12092091
APA StyleWang, T., Wei, G., Li, H., Bui, T., Zeng, Q., & Wang, R. (2023). A Method to Reduce the Intra-Frame Prediction Complexity of HEVC Based on D-CNN. Electronics, 12(9), 2091. https://doi.org/10.3390/electronics12092091