Hybrid Forecasting Methods—A Systematic Review
Abstract
:1. Introduction
2. Methods
- IEEE (through the IEEE Xplore platform);
- Elsevier (through the ScienceDirect platform);
- ACM (through ACM Digital Library).
3. Results
3.1. Hybrid Approaches Combining ARIMA and LSTM
3.2. Hybrid Approaches Combining SARIMA and LSTM
3.3. Hybrid Approaches Combining ARIMA or SARIMA and an ANN
3.4. Hybrid Approaches Combining ARIMA and BPNN or GRNN
3.5. Hybrid Approaches Using Wavelet Transform Decomposition
4. Discussion
4.1. Hybrid Forecasting Methods
4.2. Application of Hybrid Forecasting Approaches in Visual Analytics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PRISMA | Preferred Reporting Items for Systematic reviews and Meta-Analyses |
ARIMA | Auto-Regressive Integrated Moving Average |
SARIMA | Seasonal Auto-Regressive Integrated Moving Average |
LSTM | Long Short-Term Memory |
RNN | Recurrent Neural Network |
CNN | Convolutional Neural Networks |
GNN | Graph Neural Network |
GRNN | General Regression Neural Network |
ANN | Artificial Neural Network |
BPNN | Back Propagation Neural Network |
NMGM | Nonlinear Metabolic Grey Model |
DGSR | Daily Global Solar Radiation |
LOO-CV | Leave-One-Out Cross-Validation |
MLP | Multilayer Perceptron |
SVR | Support Vector Regression |
WD | Wavelet Decomposition |
DWT | Discrete Wavelet Transformxy |
EWT | Empirical Wavelet Transform |
EMD | Empirical Mode Decomposition |
EEMD | Ensemble Empirical Mode Decomposition |
CEEMDAN | Complete Ensemble Empirical Mode Decomposition with Adaptive Noise |
MAE | Mean Average Error |
SMAPE | Squared Mean Average Percentage Error |
RMSE | Root Mean Squared Error |
MAPE | Mean Absolute Percentage Error |
ACM | Association for Computing Machinery |
IEEE | Institute of Electrical and Electronics Engineers |
MDPI | Multidisciplinary Digital Publishing Institute |
JAPS | Journal of Animal and Plant Sciences |
TandFO | Taylor and Francis Online |
NAR | Autoregressive Neural Network |
POP | Persistent Organic Pollutant |
CPI | Consumer Price Index |
GDP | Gross Domestic Product |
HFRS | Hemorrhagic Fever with Renal Syndrome |
References
- Shao, X.; Ma, D.; Liu, Y.; Yin, Q. Short-term forecast of stock price of multi-branch LSTM based on K-means. In Proceedings of the 2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13 November 2017; pp. 1546–1551. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, C.; Zhang, Z.; Li, X. Electric load forecasting in smart grids using Long-Short-Term-Memory based Recurrent Neural Network. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 22–24 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Marino, D.L.; Amarasinghe, K.; Manic, M. Building energy load forecasting using Deep Neural Networks. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 24–27 October 2016; pp. 7046–7051. [Google Scholar] [CrossRef]
- Wu, D.C.W.; Ji, L.; He, K.; Tso, K.F.G. Forecasting Tourist Daily Arrivals with a Hybrid Sarima-Lstm Approach. J. Hosp. Tour. Res. 2021, 45, 52–67. [Google Scholar] [CrossRef]
- Sun, Q.; Wan, J.; Liu, S. Estimation of Sea Level Variability in the China Sea and Its Vicinity Using the SARIMA and LSTM Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3317–3326. [Google Scholar] [CrossRef]
- Wei, S.Y.; Zhang, J. Short-Term Passenger Flow Prediction of Railway Epidemic Based on SARIMA—LSTM Combined Model. IEEE Access 2022. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Song, H.; Liu, Q.; He, B.; Shi, P.; Ji, Y.; Xu, D.; Wang, J. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Infect. Drug Resist. 2019, 12, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Shen, Z.Z.; Jiang, Y. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: A time-series study. BMJ Open 2019, 9, e025773. [Google Scholar] [CrossRef]
- Wang, E.; Galjanic, T.; Johnson, R. Short-term electric load forecasting at Southern California Edison. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–3. [Google Scholar] [CrossRef]
- Goswami, K.; Kandali, A.B. Electricity Demand Prediction using Data Driven Forecasting Scheme: ARIMA and SARIMA for Real-Time Load Data of Assam. In Proceedings of the 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2–4 July 2020; pp. 570–574. [Google Scholar] [CrossRef]
- Putra, J.A.; Basbeth, F.; Bukhori, S. Sugar Production Forecasting System in PTPN XI Semboro Jember Using Autoregressive Integrated Moving Average (ARIMA) Method. In Proceedings of the 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Bandung, Indonesia, 18–20 September 2019; pp. 448–453. [Google Scholar] [CrossRef]
- Shelatkar, T.; Tondale, S.; Yadav, S.; Ahir, S. Web Traffic Time Series Forecasting using ARIMA and LSTM RNN. ITM Web Conf. 2020, 32, 03017. [Google Scholar] [CrossRef]
- Wang, D.; Meng, Y.; Chen, S.; Xie, C.; Liu, Z. A Hybrid Model for Vessel Traffic Flow Prediction Based on Wavelet and Prophet. J. Mar. Sci. Eng. 2021, 9, 1231. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, Z.; Liu, X. Short-term offshore wind power forecasting—A hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA), and deep-learning-based Long Short-Term Memory (LSTM). Renew. Energy 2022, 185, 611–628. [Google Scholar] [CrossRef]
- Zeng, Z.; Khushi, M. Wavelet Denoising and Attention-based RNN-ARIMA Model to Predict Forex Price. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Qiu, J.; Du, Q.; Wang, W.; Yin, K.; Chen, L. Short-Term Performance Metrics Forecasting for Virtual Machine to Support Anomaly Detection Using Hybrid ARIMA-WNN Model. In Proceedings of the 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI, USA, 15–19 July 2019; Volume 2, pp. 330–335. [Google Scholar] [CrossRef]
- Khandelwal, I.; Adhikari, R.; Verma, G. Time Series Forecasting Using Hybrid ARIMA and ANN Models Based on DWT Decomposition. Procedia Comput. Sci. 2015, 48, 173–179. [Google Scholar] [CrossRef]
- Keim, D.; Kohlhammer, J.; Ellis, G.; Mansmann, F. (Eds.) Mastering the Information Age: Solving Problems with Visual Analytics; Eurographics Association: Goslar, Germany, 2010. [Google Scholar]
- Keim, D.A. Designing Pixel-Oriented Visualization Techniques: Theory and Applications. IEEE Trans. Vis. Comput. Graph. 2000, 6, 59–78. [Google Scholar] [CrossRef]
- Kovalerchuk, B.; Andonie, R.; Datia, N.; Nazemi, K.; Banissi, E. (Eds.) Visual Knowledge Discovery with Artificial Intelligence: Challenges and Future Directions. In Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–27. [Google Scholar] [CrossRef]
- Kohlhammer, J.; May, T.; Hoffmann, M. Visual Analytics for the Strategic Decision Making Process. In GeoSpatial Visual Analytics; Amicis, R.D., Stojanovic, R., Conti, G., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 299–310. [Google Scholar]
- Nazemi, K.; Burkhardt, D. Visual Analytics for Analyzing Technological Trends from Text. In Proceedings of the 2019 23rd International Conference Information Visualisation (IV), Paris, France, 2–5 July 2019; pp. 191–200. [Google Scholar] [CrossRef]
- Nazemi, K.; Burkhardt, D.; Kock, A. Visual analytics for technology and innovation management. Multimed. Tools Appl. 2021, 81, 14803–14830. [Google Scholar] [CrossRef]
- Nazemi, K.; Feiter, T.; Sina, L.B.; Burkhardt, D.; Kock, A. Visual Analytics for Strategic Decision Making in Technology Management. In Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery; Kovalerchuk, B., Nazemi, K., Andonie, R., Datia, N., Banissi, E., Eds.; Springer International Publishing: Cham, Swizterland, 2022; pp. 31–61. [Google Scholar] [CrossRef]
- Sina, L.B.; Nazemi, K. Visual Analytics for Systematic Reviews According to PRISMA. In Proceedings of the 2022 26th International Conference Information Visualisation (IV), Vienna, Austria, 19–22 July 2022. [Google Scholar]
- Page, M.J.; Moher, D.; Bossuyt, P.M. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Soy Temur, A.; Akgun, M.; Temur, G. Predicting housing sales in turkey using arima, LSTM and hybrid models. J. Bus. Econ. Manag. 2019, 20, 920–938. [Google Scholar] [CrossRef]
- Yu, L.; Wu, C.; Xiong, N.N. An Intelligent Data Analysis System Combining ARIMA and LSTM for Persistent Organic Pollutants Concentration Prediction. Electronics 2022, 11, 652. [Google Scholar] [CrossRef]
- Temur, A.S.; Yildiz, S. Comparison of Forecasting Performance of ARIMA LSTM and HYBRID Models for The Sales Volume Budget of a Manufacturing Enterprise. Istanb. Bus. Res. 2021, 50, 15–45. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.; Yu, F. A Novel Multichannel Long Short-Term Memory Method With Time Series for Soil Temperature Modeling. IEEE Access 2020, 8, 182026–182043. [Google Scholar] [CrossRef]
- Yilmaz, F.M.; Arabaci, O. Should Deep Learning Models be in High Demand, or Should They Simply be a Very Hot Topic? A Comprehensive Study for Exchange Rate Forecasting. Comput. Econ. 2021, 57, 217–245. [Google Scholar] [CrossRef]
- Peirano, R.; Kristjanpoller, W.; Minutolo, M.C. Forecasting inflation in Latin American countries using a SARIMA-LSTM combination. Soft Comput. 2021, 25, 10851–10862. [Google Scholar] [CrossRef]
- Yu, S.; Dong, H.; Chen, Y.; He, Z.; Shi, X. Clothing Sales Forecast Based on ARIMA-BP Neural Network Combination Model. In Proceedings of the 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 29–31 July 2019; pp. 367–372. [Google Scholar] [CrossRef]
- Hua, S. Back-Propagation Neural Network and ARIMA Algorithm for GDP Trend Analysis. Wirel. Commun. Mob. Comput. 2022, 2022, 1967607. [Google Scholar] [CrossRef]
- Hadwan, M.; Al-Maqaleh, B.M.; Al-Badani, F.N.; Khan, R.U.; Al-Hagery, M.A. A Hybrid Neural Network and Box-Jenkins Models for Time Series Forecasting. CMC-Comput. Mater. Contin. 2022, 70, 4829–4845. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, Q.; Peng, Y.; Huang, X.-F.; He, L.-Y. Multiple strategies for a novel hybrid forecasting algorithm of ozone based on data-driven models. J. Clean. Prod. 2021, 326, 129451. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Wang, X.; Zhou, W. Groundwater Depth Forecasting Using a Coupled Model. Discret. Dyn. Nat. Soc. 2021, 2021, 6614195. [Google Scholar] [CrossRef]
- Eua-Arporn, B.; Huang, S.L.; Kuruoglu, E.E. Enhancing Neural Network Based Hybrid Learning with Empirical Wavelet Transform for Time Series Forecasting. In Proceedings of the 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), Washington, DC, USA, 1–3 November 2021; pp. 386–390. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, F. Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States. Energy 2019, 178, 781–803. [Google Scholar] [CrossRef]
- Belmahdi, B.; Louzazni, M.; El Bouardi, A. A hybrid ARIMA-ANN method to forecast daily global solar radiation in three different cities in Morocco. Eur. Phys. J. Plus 2020, 135, 925. [Google Scholar] [CrossRef]
- Azad, A.S.; Sokkalingam, R.; Daud, H.; Adhikary, S.K.; Khurshid, H.; Mazlan, S.N.A.; Rabbani, M.B.A. Water Level Prediction through Hybrid SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir Case Study. Sustainability 2022, 14, 1843. [Google Scholar] [CrossRef]
- Yu, K.W.; Hsu, C.H.; Yang, S.M. A Model Integrating ARIMA and ANN with Seasonal and Periodic Characteristics for Forecasting Electricity Load Dynamics in a State. In Proceedings of the 2019 IEEE 6th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 17–19 April 2019; pp. 19–24. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, J.; Yu, H.; Liu, D.; Xie, K.; Chen, Y.; Hu, J.; Sun, H.; Xing, F. The Development of a Hybrid Wavelet-ARIMA-LSTM Model for Precipitation Amounts and Drought Analysis. Atmosphere 2021, 12, 74. [Google Scholar] [CrossRef]
- Sina, L.; Burkhardt, D.; Nazemi, K. Visual Dashboards in Trend Analytics to Observe Competitors and Leading Domain Experts. In Proceedings of the CERC 2020, CEUR Workshop Proceedings, Belfast, UK, 10–11 September 2020; Volume 2815, pp. 222–235. [Google Scholar]
- Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [Google Scholar] [CrossRef]
Database | Query | Additional Filters |
---|---|---|
IEEE Xplore | (“All Metadata”: “Time Series” Forecast*) AND (“Abstract”: ARIMA OR “Abstract”: SARIMA OR “Abstract”: ARIMAX OR “Abstract”: ARMA OR “Abstract”: autoregressive OR “Abstract”: moving-average) AND (“Abstract”: LSTM OR “Abstract”: RNN OR “Abstract”: CNN OR “Abstract”: “Neural Network”) | Years: 2019–2022 Language: English |
ACM Digital Library | ((All: “time series”) OR (All: forecast*)) AND ((Abstract: arima) OR (Abstract: sarima) OR (Abstract: arimax) OR (Abstract: arma) OR (Abstract: autoregressive) OR (Abstract: moving-average)) AND ((Abstract: lstm) OR (Abstract: rnn) OR (Abstract: cnn) OR (Abstract: “neural network”)) | Years: 2019–2022 |
Science Direct | (Forecasting OR Prediction) AND “Time Series” AND Title, abstract or author-specified keywords:(arima OR sarima OR arimax OR autoregressive OR moving average) AND (lstm OR rnn OR cnn OR “neural network”) | |
Web of Science | (Forecasting OR Prediction) AND “Time Series” AND Abstract:(arima OR sarima OR arimax OR autoregressive OR moving-average) AND (lstm OR rnn OR cnn OR “neural network”) | 2019–2022 |
Study | Error | ARIMA | SARIMA | MLP | LSTM | ANN | BPNN | GRNN | Hybrid Model |
---|---|---|---|---|---|---|---|---|---|
[27] | RMSE | 16.745 | 21.757 | 13.252 | |||||
MAPE | 0.121 | 0.150 | 0.072 | ||||||
[28] | RMSE | 48.686 | 23.193 | 14.726 | |||||
MAPE | - | - | - | ||||||
[29] | RMSE | 871.961 | 813.579 | 685.570 | |||||
MAPE | 0.254 | 0.245 | 0.133 | ||||||
[31] | RMSE | 0.02223 | 0.01856 | 0.0155 | 0.0143 | ||||
MAPE | 0.487 | 0.259 | 0.241 | 0.204 | |||||
[30] | RMSE | 0.96946 | 0.94749 | 0.74359 | |||||
MAPE | - | - | - | ||||||
[4] | RMSE | 3070.28 | 2598.5 | 3799.76 | 2524.59 | ||||
MAPE | 1.320 | 1.006 | 1.953 | 0.79565 | |||||
[5] | RMSE | 1.667 | 1.718 | 1.155 | |||||
MAPE | 1.236 | 1.251 | 0.837 | ||||||
[32] | RMSE | 0.00272 | 0.00283 | 0.00553 | 0.00275 | ||||
MAPE | - | - | - | - | |||||
[41] | RMSE | 891.994 | 806.062 | 430.728 | |||||
MAPE | 79,810.15 | 66,032.258 | 34,323.06 | ||||||
[42] | RMSE | 29.40 | 36.00 | 17.60 | |||||
MAPE | 4.32 | 5.20 | 2.60 | ||||||
[39] | RMSE | 0.00685 | 0.00595 | 0.0045 | |||||
MAPE | 2.78 | 2.4 | 1.72 | ||||||
[40] | RMSE | 950.42 | 772.28 | 486.77 | |||||
MAPE | 64.848 | 52.583 | 32.964 | ||||||
[33] | RMSE | 27.684 | 15.503 | 12.543 | |||||
MAPE | - | - | - | ||||||
[34] | RMSE | - | - | - | |||||
MAPE | 2.80 | 3.70 | 1.88 | ||||||
[35] | RMSE | 1.252 | 0.896 | 0.547 | |||||
MAPE | - | - | - | ||||||
[43] | RMSE | 0.13342 | 0.07 | 0.06633 | |||||
MAPE | 0.72 | 0.56 | 0.51 | ||||||
[37] | RMSE | 0.0797 | 0.0136 | ||||||
MAPE | - | - | |||||||
[36] | RMSE | 12.2361 | 4.7383 | ||||||
MAPE | 23.2028 | 7.9348 | |||||||
[38] | RMSE | 17.385 | 18.561 | 13.966 | |||||
MAPE | - | - | - | ||||||
[8] | RMSE | 220.6269 | 202.1684 | 196.4682 | |||||
MAPE | 21.02 | 19.20 | 17.83 | ||||||
[7] | RMSE | 0.2805 | 0.2553 | ||||||
MAPE | 8.8797 | 5.7222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sina, L.B.; Secco, C.A.; Blazevic, M.; Nazemi, K. Hybrid Forecasting Methods—A Systematic Review. Electronics 2023, 12, 2019. https://doi.org/10.3390/electronics12092019
Sina LB, Secco CA, Blazevic M, Nazemi K. Hybrid Forecasting Methods—A Systematic Review. Electronics. 2023; 12(9):2019. https://doi.org/10.3390/electronics12092019
Chicago/Turabian StyleSina, Lennart B., Cristian A. Secco, Midhad Blazevic, and Kawa Nazemi. 2023. "Hybrid Forecasting Methods—A Systematic Review" Electronics 12, no. 9: 2019. https://doi.org/10.3390/electronics12092019