Base Station MIMO Antenna in 1 × 6 Array Configurations with Reflector Design for Sub-6 GHz 5G Applications
Abstract
:1. Introduction
2. Antenna Design and Discussion
3. Measured Radiation Performance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thi, L.; Ha, C.; Ta, S.X.; Quyen, N.X.; Kiem, N.K.; Chien, D.-N. High-Isolation Wide-Beam Dual-Polarized Antenna Uti-lizing Symmetrical Feeding. Prog. Electromagn. Res. M 2022, 111, 53–63. [Google Scholar]
- Liao, C.; Wang, B.; Zhu, C.; Hao, H.; Yin, B. Broadband Dual-Polarized Loop Cross-Dipole Antenna for 5G Base Station Applications. Electronics 2020, 9, 1574. [Google Scholar] [CrossRef]
- Fan, J.; Lin, J.; Cai, J.; Qin, F. Ultra-wideband circularly polarized cavity-backed crossed-dipole antenna. Sci. Rep. 2022, 12, 4569. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhou, J.; Kang, L.; Liu, B.; Yang, G.; Shi, X. A Closed-Loop Cross-Dipole Antenna Array for Wideband OAM Communication. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2492–2496. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Zhang, A.; Kishk, A.A. Dual-Polarized Broadband Base Station Antenna Backed With Dielectric Cavity for 5G Communications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2051–2055. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Yang, S. Integration of 5G Rectangular MIMO Antenna Array and GSM Antenna for Dual-Band Base Station Applications. IEEE Access 2020, 8, 63175–63187. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y.; Gong, S. A Dual-Broadband, Dual-Polarized Base Station Antenna for 2G/3G/4G Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 1111–1114. [Google Scholar] [CrossRef]
- Yang, J.; Ding, M.; Mao, G.; Lin, Z.; Zhang, D.-G.; Luan, T.H. Optimal Base Station Antenna Downtilt in Downlink Cellular Networks. IEEE Trans. Wirel. Commun. 2019, 18, 1779–1791. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Li, R.; Fu, H. A Broadband Dual-Polarized Planar Antenna for 2G/3G/LTE Base Stations. IEEE Trans. Antennas Propag. 2014, 62, 4836–4840. [Google Scholar] [CrossRef]
- Zheng, D.; Luo, Y.; Chu, Q.-X. A Miniaturized Wideband Dual-Polarized Antenna Based on Mode-Control Principle for Base-Station Applications. IEEE Access 2020, 8, 62218–62227. [Google Scholar] [CrossRef]
- Lian, R.; Wang, Z.; Yin, Y.; Wu, J.; Song, X. Design of a Low-Profile Dual-Polarized Stepped Slot Antenna Array for Base Station. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 362–365. [Google Scholar] [CrossRef]
- Amer, R.; Saad, W.; Marchetti, N. Toward a connected sky: Performance of beamforming with down-tilted antennas for ground and uav user co-existence. IEEE Commun. Lett. 2019, 23, 1840–1844. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, S.; Mishra, M.; Kshetrimayum, R.S.; Sonkar, R.K.; Bhattacharjee, S.; Saha, B. High port-to-port isolation dual circularly polarised microstrip patch antenna with multifunction DGS. IET Microwaves, Antennas Propag. 2020, 14, 2035–2044. [Google Scholar] [CrossRef]
- Gabriel, R.; Geissler, M. Antenna Systems for Cellular Base Stations. In Handbook of Antenna Technologies; Springer: Singapore, 2016; pp. 2271–2346. [Google Scholar] [CrossRef]
- Chataut, R.; Akl, R. Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.-L.; Zheng, D.-Z.; Chu, Q.-X. A Dual-polarized Planar Antenna Using Four Folded Dipoles and Its Array for Base Stations. IEEE Trans. Antennas Propag. 2016, 64, 5536–5542. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, Y.; Pedersen, G.F.; Zhang, S. Mutual Decoupling for Massive MIMO Antenna Arrays by Using Triple-Layer Meta-Surface. IEEE Open J. Antennas Propag. 2022, 3, 1079–1089. [Google Scholar] [CrossRef]
- Nadeem, I.; Choi, D.-Y. Study on Mutual Coupling Reduction Technique for MIMO Antennas. IEEE Access 2018, 7, 563–586. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Kshetrimayum, R.S.; Sonkar, R.K. High inter-port isolation dual circularly polarized slot antenna with split-ring resonator based novel metasurface. AEU-Int. J. Electron. Commun. 2019, 107, 146–156. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Li, Q. A Review of Mutual Coupling in MIMO Systems. IEEE Access 2018, 6, 24706–24719. [Google Scholar] [CrossRef]
Term | Value (mm) | Term | Value (mm) |
---|---|---|---|
L | 78 | L1 | 6.4 |
W | 66 | L2 | 6.4 |
S1 | 29 | LCPL | 36 |
S2 | 28.6 | Yf | 31 |
W1 | 27.36 | WFD | 3 |
W2 | 27.36 | LGD | 7.6 |
W3 | 57 | D1 | 62 |
Down tilt | Frequency (GHz) | HPBW | FBR (dB) | Gain (dBi) | XPD ± 60° |
---|---|---|---|---|---|
0° | 3.2 | 69.35 | 26.61 | 13.92 | 15.87 |
4.2 | 64.47 | 31.67 | 14.25 | 13.62 | |
5.2 | 60.65 | 33.39 | 13.98 | 14.54 | |
5° | 3.2 | 9.86 | 28.89 | 13.98 | 17.11 |
4.2 | 67.21 | 33.71 | 14.87 | 12.17 | |
5.2 | 60.36 | 33.71 | 16.11 | 11.57 | |
10° | 3.2 | 70.23 | 33.44 | 13.89 | 15.21 |
4.2 | 67.58 | 30.71 | 14.7 | 14.23 | |
5.2 | 61.2 | 31.26 | 15 | 14.62 |
Ref. | Array Configuration | Size (mm) | Gain (dB) | Bandwidth (GHz) | Port to Port Isolation | HPBW H-Plane | XPD (±60°) | Down Tilt |
---|---|---|---|---|---|---|---|---|
6 | 16-element | 344 × 344 | 8.6 and 7.3 | 0.69–0.96 and 3.3–5.0 | >30 dB | 74° in LB and 88° in UB | >25 dB | Electrical |
7 | 8-element | 880 × 112 | 16 | 1.7–2.7 | >30 dB | 65 ± 8° | NG | NG |
8 | 20-element | 45.2 × 45.2 | 8.7 ± 0.5 | 1.71–2.69 | >28 dB | 64.8 ± 2.7° | 7 dB | Electrical |
10 | 5-element | 640 × 240 | 16.4 and 18.8 | 704–960 and 1710–2690 | >27.5 dB | 61.5° and 90° | 22 dB | Electrical |
13 | 4-element | 69 × 69 | 13.5 and 13.9 | 1.55–2.5 and 1.69–2.5 | >35 dB | NG | NG | NG |
Proposed | 6-element | 66 × 66 × 78 | 11–18 dB | 3.2–5.22 | >27 dB | 53°–69° | 11 dB–23 dB | Electrical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasim, M.; Khera, S.; Malik, P.K.; Kumari, S.V.; Das, S.; El-Shafai, W.; Aly, M.H. Base Station MIMO Antenna in 1 × 6 Array Configurations with Reflector Design for Sub-6 GHz 5G Applications. Electronics 2023, 12, 669. https://doi.org/10.3390/electronics12030669
Wasim M, Khera S, Malik PK, Kumari SV, Das S, El-Shafai W, Aly MH. Base Station MIMO Antenna in 1 × 6 Array Configurations with Reflector Design for Sub-6 GHz 5G Applications. Electronics. 2023; 12(3):669. https://doi.org/10.3390/electronics12030669
Chicago/Turabian StyleWasim, Mohd., Shelej Khera, Praveen Kumar Malik, Samudrala Vara Kumari, Sudipta Das, Walid El-Shafai, and Moustafa H. Aly. 2023. "Base Station MIMO Antenna in 1 × 6 Array Configurations with Reflector Design for Sub-6 GHz 5G Applications" Electronics 12, no. 3: 669. https://doi.org/10.3390/electronics12030669
APA StyleWasim, M., Khera, S., Malik, P. K., Kumari, S. V., Das, S., El-Shafai, W., & Aly, M. H. (2023). Base Station MIMO Antenna in 1 × 6 Array Configurations with Reflector Design for Sub-6 GHz 5G Applications. Electronics, 12(3), 669. https://doi.org/10.3390/electronics12030669