On the Application of Thévenin Equivalent Circuits to the Analysis of Vacuum Tube Circuits
Abstract
1. Introduction
2. Thévenin Equivalent Circuits
2.1. Looking into the “Inner Plate”
2.2. Looking into the Cathode
3. Applications
3.1. Common-Cathode Amplifier
3.2. Common-Plate Amplifier (Cathode Follower)
3.3. Common-Grid Amplifier
3.4. Differential Amplifier: The Long-Tailed Pair
4. Conclusions and Directions for Future Work
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BJT | Bipolar junction transistor |
FET | Field-effect transistor |
VCVS | Voltage-controlled voltage source |
References
- Hamm, R. Tubes Versus Transistors-Is There an Audible Difference. J. Audio Eng. Soc. 1973, 21, 267–273. [Google Scholar]
- Leach, W. SPICE Models for Vacuum-Tube Amplifiers. J. Audio Eng. Soc. 1995, 43, 117–126. [Google Scholar]
- Sjursen, W. Improved SPICE Model for Triode Vacuum Tubes. J. Audio Eng. Soc. 1997, 45, 1082–1088. [Google Scholar]
- Kashuba, A. Ab Initio Model for Triode Tube. J. Audio Eng. Soc. 1999, 47, 373–377. [Google Scholar]
- Tsambos, P. Three-Halves-Power Law Models for Actual Vacuum Tubes. J. Audio Eng. Soc. 2020, 68, 441–453. [Google Scholar] [CrossRef]
- Oshimo, S.; Hamasaki, T. Physically Based Unified Modeling for a Series of Miniature Twin Triode Tubes. J. Audio Eng. Soc. 2018, 66, 808–822. [Google Scholar] [CrossRef]
- Abuelma’atti, M. Large-Signal Analysis of Triode Vacuum-Tube Amplifiers. J. Audio Eng. Soc. 2003, 51, 1046–1053. [Google Scholar]
- Orcioni, S.; Terenzi, A.; Cecchi, S.; Piazza, F.; Carini, A. Identification of Volterra Models of Tube Audio Devices using Multiple-Variance Method. J. Audio Eng. Soc. 2018, 66, 823–838. [Google Scholar] [CrossRef]
- Pittman, A. The Tube Amp Book, Deluxe Revised ed.; Backbeat: London, UK, 2003. [Google Scholar]
- Hunter, D. The Guitar Amp Handbook: Understanding Tube Amplifiers and Getting Great Songs; Backbeat: London, UK, 2005. [Google Scholar]
- Hunter, D. Guitar Rigs: Classic Guitar and Amp Combinations; Backbeat: London, UK, 2005. [Google Scholar]
- Barbour, E. The Cool Sound of Tubes. IEEE Spectr. 1998, 35, 24–35. [Google Scholar] [CrossRef]
- Pakarinen, J.; Yeh, D. A Review of Digital Techniques for Modeling Vacuum-Tube Guitar Amplifiers. Comput. Music J. 2009, 33, 85–100. [Google Scholar] [CrossRef]
- Neumann, U.; Irving, M. Guitar Amplifier Overdrive: A Visual Tour; Lulu: Raleigh, NC, USA, 2015. [Google Scholar]
- Kuehnel, R. Guitar Amplifier Electronics: System Design; Amp Books: Seattle, WA, USA, 2019. [Google Scholar]
- Kuehnel, R. Guitar Amplifier Electronics: Circuit Simulation; Amp Books: Seattle, WA, USA, 2019. [Google Scholar]
- Kuehnel, R. Guitar Amplifier Electronics: Fender Bassman; Amp Books: Seattle, WA, USA, 2021. [Google Scholar]
- Kuehnel, R. Guitar Amplifier Electronics: Fender Deluxe; Amp Books: Seattle, WA, USA, 2021. [Google Scholar]
- Kuehnel, R. Guitar Amplifier Electronics: Soldano SLO; Amp Books: Seattle, WA, USA, 2021. [Google Scholar]
- Hood, J. Valve and Transistor Audio Amplifiers; Newnes: Oxford, UK, 1997. [Google Scholar]
- Jones, M. Valve Amplifiers, 3rd ed.; Newnes: Oxford, UK, 2003. [Google Scholar]
- Jones, M. Building Valve Amplifiers; Newnes: Oxford, UK, 2004. [Google Scholar]
- Rozenblit, B. Tubes and Circuits; Transcendent Sound: Kansas City, MO, USA, 2012. [Google Scholar]
- Circuits for Audio Amplifiers; Segment: Vernon, CT, USA, 1959.
- Tomasin, L.; Bevilacqua, A. A Time-Variant Analysis of Passive Resistive Mixers Using Thévenin Theorem. In Proceedings of the 2023 18th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Valencia, Spain, 18–21 June 2023. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Chang, P.; Xue, F.; Zhang, T. Voltage Stability Analysis of a Power System with Wind Power Based on the Thévenin Equivalent Analytical Method. Electronics 2022, 11, 1758. [Google Scholar] [CrossRef]
- Donnelly, T.; Pekarek, S.; Fudge, D.; Zarate, N. Thévenin Equivalent Circuits for Modeling Common-Mode Behavior in Power Electronic Systems. IEEE Open Access J. Power Energy 2020, 7, 163–172. [Google Scholar] [CrossRef]
- Holder, M. Thévenin’s Theorem and a Black Box. IEEE Trans. Educ. 2009, 52, 573–575. [Google Scholar] [CrossRef]
- Su, H.Y.; Liu, T.Y. Robust Thévenin Equivalent Parameter Estimation for Voltage Stability Assessment. IEEE Trans. Power Syst. 2018, 33, 4637–4639. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.; Rong, S.; Lu, J.; Li, W. Effect of Load Change on the Thévenin Equivalent Impedance of Power System. Energies 2017, 10, 330. [Google Scholar] [CrossRef]
- Heydt, G. Thévenin’s Theorem Applied to the Analysis of Polyphase Transmission Circuits. IEEE Trans. Power Deliv. 2017, 32, 72–77. [Google Scholar] [CrossRef]
- Barletta, G.; DiPrima, P.; Papurello, D. Thévenin’s Battery Model Parameter Estimation Based on Simulink. Energies 2022, 15, 6207. [Google Scholar] [CrossRef]
- Salazar, D.; Garcia, M. Estimation and Comparison of SOC in Batteries Used in Electromobility Using the Thévenin Model and Coulomb Ampere Counting. Energies 2022, 15, 7204. [Google Scholar] [CrossRef]
- Suti, A.; Di Rito, G.; Mattei, G. Development and Experimental Validation of Novel Thévenin-Based Hysteretic Models for Li-Po Battery Packs Employed in Fixed-Wing UAVs. Energies 2022, 15, 9249. [Google Scholar] [CrossRef]
- Leach, W. On the Application of Thévenin and Norton Equivalent Circuits and Signal Flow Graphs to the Small-Signal Analysis of Active Circuits. IEEE Trans. Circuits Syst.—I Fundam. Theory Appl. 1996, 43, 885–893. [Google Scholar] [CrossRef][Green Version]
- Leach, W. On the Application of Superposition to Dependent Sources in Circuit Analysis. Available online: https://leachlegacy.ece.gatech.edu/papers/superpos.pdf (accessed on 25 November 2023).
- Damper, R. Can Dependent Sources be Suppressed in Electrical Circuit Theory? Int. J. Electron. 2011, 98, 543–553. [Google Scholar] [CrossRef]
- Davis, A. Some Fundamental Topics in Introductory Circuit Analysis: A Critique. IEEE Trans. Educ. 2000, 43, 330–335. [Google Scholar] [CrossRef]
- Jaeger, R.; Blalock, T. Microelectronic Circuit Design, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Sedra, A.; Smith, K.; Carusone, T.; Gaudet, V. Microelectronic Circuits, 8th ed.; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Leach, W. Fundamentals of Low-Noise Electronics, 4th ed.; Kendall Hunt: Dubuque, IA, USA, 2012. [Google Scholar]
- Reich, H. Principles of Electron Tubes; McGraw-Hill: New York, NY, USA, 1941. [Google Scholar]
- Cruft Electronics Staff. Electronic Circuits and Tubes; McGraw-Hill: New York, NY, USA, 1947. [Google Scholar]
- Fischer, B. Radio and Television Mathematics; Macmillan: London, UK, 1949. [Google Scholar]
- DeFrance, J. Electronic Tubes and Semiconductors; Prentice-Hall: Hoboken, NJ, USA, 1958. [Google Scholar]
- Kuehnel, R. Guitar Amplifier Electronics: Basic Theory; Amp Books: Seattle, WA, USA, 2018. [Google Scholar]
- Kuehnel, R. Vacuum Tube Circuit Design: Guitar Amplifier Preamps, 2nd ed.; Amp Books: Seattle, WA, USA, 2009. [Google Scholar]
- Hood, J. Design and Construction of Tube Guitar Amplifiers, 3rd ed.; TacTec Press: San Jose, CA, USA, 2012. [Google Scholar]
- Brazee, J. Semiconductor and Tube Electronics; Holt, Rinehart and Winston: New York, NY, USA, 1968. [Google Scholar]
- Blencowe, M. Designing Tube Preamps for Guitar and Bass; Lulu: Raleigh, NC, USA, 2009. [Google Scholar]
- Dailey, D. Electronics for Guitarists, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kuehnel, R. Circuit Analysis of a Legendary Tube Amplifier: The Fender Bassman 5F6-A, 3rd ed.; Amp Books: Seattle, WA, USA, 2009. [Google Scholar]
- Everitt, W. (Ed.) Fundamentals of Radio and Electronics, 2nd ed.; Prentice Hall: Seattle, WA, USA, 1958. [Google Scholar]
- Millman, J. Vacuum-Tube and Semiconductor Electronics; McGraw-Hill: New York, NY, USA, 1958. [Google Scholar]
- Kuehnel, R. Vacuum Tube Circuit Design: Guitar Amplifier Power Amps, 2nd ed.; Amp Books: Seattle, WA, USA, 2008. [Google Scholar]
- Mason, S. Feedback Theory–Further Properties of Signal Flow Graphs. Proc. IRE 1956, 44, 920–926. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanterman, A. On the Application of Thévenin Equivalent Circuits to the Analysis of Vacuum Tube Circuits. Electronics 2023, 12, 4804. https://doi.org/10.3390/electronics12234804
Lanterman A. On the Application of Thévenin Equivalent Circuits to the Analysis of Vacuum Tube Circuits. Electronics. 2023; 12(23):4804. https://doi.org/10.3390/electronics12234804
Chicago/Turabian StyleLanterman, Aaron. 2023. "On the Application of Thévenin Equivalent Circuits to the Analysis of Vacuum Tube Circuits" Electronics 12, no. 23: 4804. https://doi.org/10.3390/electronics12234804
APA StyleLanterman, A. (2023). On the Application of Thévenin Equivalent Circuits to the Analysis of Vacuum Tube Circuits. Electronics, 12(23), 4804. https://doi.org/10.3390/electronics12234804