Development of a High Sampling Rate Data Acquisition System Working in a High Pulse Count Rate Region for Radiation Diagnostics in Nuclear Fusion Plasma Research
Abstract
:1. Introduction
2. High Sampling Rate Data Acquisition System Working in High Pulse Count Rate Region for Radiation Diagnostics
3. Testing of the Data Acquisition System in a Fast Neutron Source
4. Typical Result in Large Helical Device
4.1. Vertical Neutron Camera for the Radial Profile of the Deuterium-Deuterium Emission Diagnostic
4.2. Deuterium-Deuterium Neutron Emission Profile Measurement Result
5. Discussion
6. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ongena, J.; Koch, R.; Wolf, R.; Zohm, H. Magnetic-confinement fusion. Nat. Phys. 2016, 12, 398–410. [Google Scholar] [CrossRef]
- Pearson, R.J.; Costley, A.E.; Phaal, R.; Nuttall, W.J. Technology Roadmapping for mission-led agile hardware development: A case study of a commercial fusion energy start-up. Technol. Forecast. Soc. Chang. 2020, 158, 120064. [Google Scholar] [CrossRef]
- Young, K.M. An Assessment of the Penetrations in the First Wall Required for Plasma Measurements for Control of an Advanced Tokamak Plasma Demo. Fusion Sci. Technol. 2017, 57, 298–304. [Google Scholar] [CrossRef]
- Orsitto, F.P.; Villari, R.; Moro, F.; Todd, T.N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; et al. Diagnostics and control for the steady state and pulsed tokamak DEMO. Nucl. Fusion 2016, 56, 026009. [Google Scholar] [CrossRef]
- Biel, W.; de Baar, M.; Dinklage, A.; Felici, F.; Konig, R.; Meister, H.; Treutterer, W.; Wenninger, R. DEMO diagnostics and burn control. Fusion Eng. Des. 2015, 96–97, 8–15. [Google Scholar] [CrossRef]
- Fasoli, A.; Gormenzano, C.; Berk, H.L.; Breizman, B.; Briguglio, S.; Darrow, D.S.; Gorelenkov, N.; Heidbrink, W.W.; Jaun, A.; Konovalov, S.V.; et al. Chapter 5: Physics of energetic ions. Nucl. Fusion 2007, 47, S264–S284. [Google Scholar] [CrossRef]
- Gorelenkov, N.N.; Pinches, S.D.; Toi, K. Energetic particle physics in fusion research in preparation for burning plasma experiments. Nucl. Fusion 2014, 54, 125001. [Google Scholar] [CrossRef]
- Heidbrink, W.W.; Sadler, G.J. The Behavior of Fast Ions in Tokamak Experiments. Nucl. Fusion 1994, 34, 535–615. [Google Scholar] [CrossRef]
- Jarvis, O.N. Neutron Measurement Techniques for Tokamak Plasmas. Plasma Phys. Control. Fusion 1994, 36, 209–244. [Google Scholar] [CrossRef]
- Osakabe, M.; Takeiri, Y.; Morisaki, T.; Motojima, G.; Ogawa, K.; Isobe, M.; Tanaka, M.; Murakami, S.; Shimizu, A.; Nagaoka, K.; et al. Current Status of Large Helical Device and Its Prospect for Deuterium Experiment. Fusion Sci. Technol. 2017, 72, 199–210. [Google Scholar] [CrossRef]
- Kiptily, V.G.; Cecil, F.E.; Medley, S.S. Gamma ray diagnostics of high temperature magnetically confined fusion plasmas. Plasma Phys. Control. Fusion 2006, 48, R59–R82. [Google Scholar] [CrossRef]
- Medley, S.S.; Scott, S.D.; Roquemore, A.L.; Cecil, F.E. Performance of the fusion gamma diagnostic on TFTR. Rev. Sci. Instrum. 1990, 61, 3226–3228. [Google Scholar] [CrossRef]
- Cecil, F.E.; Liu, H.; Scorby, J.C.; Medley, S.S. Prompt gamma ray diagnostics of advanced fuel fusion plasmas. Rev. Sci. Instrum. 1990, 61, 3223–3225. [Google Scholar] [CrossRef]
- Cecil, F.E.; Medley, S.S. Gamma ray measurements during deuterium and 3He discharges on TFTR. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1988, 271, 628–635. [Google Scholar] [CrossRef]
- Magee, R.M.; Ogawa, K.; Tajima, T.; Allfrey, I.; Gota, H.; McCarroll, P.; Ohdachi, S.; Isobe, M.; Kamio, S.; Klumper, V.; et al. First measurements of p11B fusion in a magnetically confined plasma. Nat. Commun. 2023, 14, 955. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Z.; Chance, M.S. Low-n shear Alfvén spectra in axisymmetric toroidal plasmas. Phys. Fluids 1986, 29, 3695. [Google Scholar] [CrossRef]
- Chen, L. Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks. Phys. Plasmas 1994, 1, 1519–1522. [Google Scholar] [CrossRef]
- Kiptily, V.G.; Fitzgerald, M.; Goloborodko, V.; Sharapov, S.E.; Challis, C.D.; Frigione, D.; Graves, J.; Mantsinen, M.J.; Beaumont, P.; Garcia-Munoz, M.; et al. Fusion product losses due to fishbone instabilities in deuterium JET plasmas. Nucl. Fusion 2018, 58, 014003. [Google Scholar] [CrossRef]
- Heidbrink, W.W.; Strait, E.J.; Doyle, E.; Sager, G.; Snider, R.T. An Investigation of Beam Driven Alfven Instabilities in the Diii-D Tokamak. Nucl. Fusion 1991, 31, 1635–1648. [Google Scholar] [CrossRef]
- Toi, K.; Ogawa, K.; Isobe, M.; Osakabe, M.; Spong, D.A.; Todo, Y. Energetic-ion-driven global instabilities in stellarator/helical plasmas and comparison with tokamak plasmas. Plasma Phys. Control. Fusion 2011, 53, 024008. [Google Scholar] [CrossRef]
- Duong, H.H.; Heidbrink, W.W.; Strait, E.J.; Petrie, T.W.; Lee, R.; Moyer, R.A.; Watkins, J.G. Loss of Energetic Beam Ions during Tae Instabilities. Nucl. Fusion 1993, 33, 749–765. [Google Scholar] [CrossRef]
- Darrow, D.S.; Zweben, S.J.; Chang, Z.; Cheng, C.Z.; Diesso, M.D.; Fredrickson, E.D.; Mazzucato, E.; Nazikian, R.; Phillips, C.K.; Popovichev, S.; et al. Observations of neutral beam and ICRF tail ion losses due to Alfven modes in TFTR. Nucl. Fusion 1997, 37, 939–954. [Google Scholar] [CrossRef]
- Giacomelli, L.; Zimbal, A.; Tittelmeier, K.; Schuhmacher, H.; Tardini, G.; Neu, R.; Team, A.U. The compact neutron spectrometer at ASDEX Upgrade. Rev. Sci. Instrum. 2011, 82, 123504. [Google Scholar] [CrossRef] [PubMed]
- Rigamonti, D.; Zhong, G.Q.; Croci, G.; Giacomelli, L.; Gorini, G.; Hu, Z.; Muraro, A.; Nocente, M.; Perelli Cippo, E.; Rebai, M.; et al. First neutron spectroscopy measurements with a compact C7LYC based detector at EAST. J. Instrum. 2019, 14, C09025. [Google Scholar] [CrossRef]
- Binda, F.; Eriksson, J.; Ericsson, G.; Hellesen, C.; Conroy, S.; Nocente, M.; Sundén, E.A. Generation of the neutron response function of an NE213 scintillator for fusion applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2017, 866, 222–229. [Google Scholar] [CrossRef]
- Iwanowska, J.; Swiderski, L.; Krakowski, T.; Moszynski, M.; Szczesniak, T.; Pausch, G. The time-of-flight method for characterizing the neutron response of liquid organic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 781, 44–49. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, X.; Xie, X.; Gorini, G.; Chen, Z.; Peng, X.; Chen, J.; Zhang, G.; Fan, T.; Zhong, G.; et al. Neutron energy spectrum measurements with a compact liquid scintillation detector on EAST. J. Instrum. 2013, 8, P07016. [Google Scholar] [CrossRef]
- Adams, J.M.; Jarvis, O.N.; Sadler, G.J.; Syme, D.B.; Watkins, N. The JET neutron emission profile monitor. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 1993, 329, 277–290. [Google Scholar] [CrossRef]
- Ishikawa, M.; Nishitani, T.; Kusama, Y.; Sukegawa, A.; Takechi, M.; Shinohara, K.; Krasilnikov, A.; Kashuck, Y.; Sasao, M.; Isobe, M.; et al. Neutron Emission Profile Measurement and Fast Charge Exchange Neutral Particle Flux Measurement for Transport Analysis of Energetic Ions in JT-60U. Plasma Fusion Res. 2007, 2, 019. [Google Scholar] [CrossRef]
- Esposito, B.; Marocco, D.; Gandolfo, G.; Belli, F.; Bertalot, L.; Blocki, J.; Bocian, D.; Brolatti, G.; Cecconello, M.; Centioli, C.; et al. Progress of Design and Development for the ITER Radial Neutron Camera. J. Fusion Energy 2022, 41, 22. [Google Scholar] [CrossRef]
- Zhong, G.Q.; Hu, L.Q.; Pu, N.; Zhou, R.J.; Xiao, M.; Cao, H.R.; Zhu, Y.B.; Li, K.; Fan, T.S.; Peng, X.Y.; et al. Status of neutron diagnostics on the experimental advanced superconducting tokamak. Rev. Sci. Instrum. 2016, 87, 11D820. [Google Scholar] [CrossRef]
- Cui, Z.Q.; Xie, X.F.; Tong, J.J.; Qu, J.Y.; Hu, Z.M. Design of a neutron camera for the HL-2A tokamak. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019, 942, 162332. [Google Scholar] [CrossRef]
- Uchida, Y.; Takada, E.; Fujisaki, A.; Isobe, M.; Ogawa, K.; Shinohara, K.; Tomita, H.; Kawarabayashi, J.; Iguchi, T. A study on fast digital discrimination of neutron and gamma-ray for improvement neutron emission profile measurement. Rev. Sci. Instrum. 2014, 85, 11E118. [Google Scholar] [CrossRef] [PubMed]
- Riva, M.; Esposito, B.; Marocco, D.; Belli, F.; Syme, B.; Contributors, J.-E. The new digital electronics for the JET Neutron Profile Monitor: Performances and first experimental results. Fusion Eng. Des. 2011, 86, 1191–1195. [Google Scholar] [CrossRef]
- Cester, D.; Lunardon, M.; Nebbia, G.; Stevanato, L.; Viesti, G.; Petrucci, S.; Tintori, C. Pulse shape discrimination with fast digitizers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2014, 748, 33–38. [Google Scholar] [CrossRef]
- CAEN. Available online: https://www.caen.it/ (accessed on 13 September 2023).
- DPP-PSD. Available online: https://www.caen.it/products/dpp-psd/ (accessed on 13 September 2023).
- Perkins, L.J.; Scott, M.C. The application of pulse shape discrimination in NE 213 to neutron spectrometry. Nucl. Instrum. Methods 1979, 166, 451–464. [Google Scholar] [CrossRef]
- Phillips, G.W.; Marlow, K.W. Automatic analysis of gamma-ray spectra from germanium detectors. Nucl. Instrum. Methods 1976, 137, 525–536. [Google Scholar] [CrossRef]
- Firk, F.W.K. Neutron time-of-flight spectrometers. Nucl. Instrum. Methods 1979, 162, 539–563. [Google Scholar] [CrossRef]
- Winyard, R.A.; Lutkin, J.E.; McBeth, G.W. Pulse shape discrimination in inorganic and organic scintillators. I. Nucl. Instrum. Methods 1971, 95, 141–153. [Google Scholar] [CrossRef]
- D’Mellow, B.; Aspinall, M.D.; Mackin, R.O.; Joyce, M.J.; Peyton, A.J. Digital discrimination of neutrons and -rays in liquid scintillators using pulse gradient analysis. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 578, 191–197. [Google Scholar] [CrossRef]
- McBeth, G.W.; Lutkin, J.E.; Winyard, R.A. A simple zero crossing pulse shape discrimination system. Nucl. Instrum. Methods 1971, 93, 99–102. [Google Scholar] [CrossRef]
- Yousefi, S.; Lucchese, L.; Aspinall, M.D. Digital discrimination of neutrons and gamma-rays in liquid scintillators using wavelets. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2009, 598, 549–553. [Google Scholar] [CrossRef]
- Flores, J.L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 830, 287–293. [Google Scholar] [CrossRef]
- Griffiths, J.; Kleinegesse, S.; Saunders, D.; Taylor, R.; Vacheret, A. Pulse shape discrimination and exploration of scintillation signals using convolutional neural networks. Mach. Learn. Sci. Technol. 2020, 1, 045022. [Google Scholar] [CrossRef]
- Fu, C.; Di Fulvio, A.; Clarke, S.D.; Wentzloff, D.; Pozzi, S.A.; Kim, H.S. Artificial neural network algorithms for pulse shape discrimination and recovery of piled-up pulses in organic scintillators. Ann. Nucl. Energy 2018, 120, 410–421. [Google Scholar] [CrossRef]
- Takeiri, Y. The Large Helical Device: Entering Deuterium Experiment Phase Toward Steady-State Helical Fusion Reactor Based on Achievements in Hydrogen Experiment Phase. IEEE Trans. Plasma Sci. 2018, 46, 2348–2353. [Google Scholar] [CrossRef]
- Takeiri, Y. Prospect Toward Steady-State Helical Fusion Reactor Based on Progress of LHD Project Entering the Deuterium Experiment Phase. IEEE Trans. Plasma Sci. 2018, 46, 1141–1148. [Google Scholar] [CrossRef]
- Takeiri, Y. Advanced Helical Plasma Research towards a Steady-State Fusion Reactor by Deuterium Experiments in Large Helical Device. Atoms 2018, 6, 69. [Google Scholar] [CrossRef]
- Isobe, M.; Ogawa, K.; Nishitani, T.; Miyake, H.; Kobuchi, T.; Pu, N.; Kawase, H.; Takada, E.; Tanaka, T.; Li, S.Y.; et al. Neutron Diagnostics in the Large Helical Device. IEEE Trans. Plasma Sci. 2018, 46, 2050–2058. [Google Scholar] [CrossRef]
- Ogawa, K.; Isobe, M.; Nishitani, T.; Murakami, S.; Seki, R.; Nuga, H.; Kamio, S.; Fujiwara, Y.; Yamaguchi, H.; Saito, Y.; et al. Energetic ion confinement studies using comprehensive neutron diagnostics in the Large Helical Device. Nucl. Fusion 2019, 59, 076017. [Google Scholar] [CrossRef]
- Ogawa, K.; Isobe, M.; Osakabe, M. Progress on Integrated Neutron Diagnostics for Deuterium Plasma Experiments and Energetic Particle Confinement Studies in the Large Helical Device During the Campaigns from FY2017 to FY2019. Plasma Fusion Res. 2021, 16, 1102023. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, L.; Hu, Z.; Sun, J.; Li, X.; Ogawa, K.; Isobe, M.; Sangaroon, S.; Liao, L.; Yang, D.; et al. Design and optimization of an advanced time-of-flight neutron spectrometer for deuterium plasmas of the large helical device. Rev. Sci. Instrum. 2021, 92, 053547. [Google Scholar] [CrossRef] [PubMed]
- SiTCP. Available online: https://rd.kek.jp/project/soi/SEABAS/ (accessed on 13 September 2023).
- IAEA TECDOC SERIES. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements; International Atomic Energy Agency, Vienna International Centre: Vienna, Austria, 2014. [Google Scholar]
- Ogawa, K.; Isobe, M.; Nishitani, T.; Kobuchi, T. The large helical device vertical neutron camera operating in the MHz counting rate range. Rev. Sci. Instrum. 2018, 89, 113509. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Nishitani, T.; Isobe, M.; Murata, I.; Hatano, Y.; Matsuyama, S.; Nakanishi, H.; Mukai, K.; Sato, M.; Yokota, M.; et al. Investigation of irradiation effects on highly integrated leading-edge electronic components of diagnostics and control systems for LHD deuterium operation. Nucl. Fusion 2017, 57, 086012. [Google Scholar] [CrossRef]
- Nakanishi, H.; Ohsuna, M.; Kojima, M.; Imazu, S.; Nonomura, M.; Hasegawa, M.; Nakamura, K.; Higashijima, A.; Yoshikawa, M.; Emoto, M.; et al. Data Acquisition and Management System of LHD. Fusion Sci. Technol. 2010, 58, 445–457. [Google Scholar] [CrossRef]
- Open_Access_Server. Available online: https://w3-ext.lhd.nifs.ac.jp/dx/lhd.vnc25.xxxxx (accessed on 13 September 2023).
- Yamada, I.; Narihara, K.; Funaba, H.; Minami, T.; Hayashi, H.; Kohmoto, T. Recent Progress of the LHD Thomson Scattering System. Fusion Sci. Technol. 2017, 58, 345–351. [Google Scholar] [CrossRef]
- Akiyama, T.; Kawahata, K.; Tanaka, K.; Tokuzawa, T.; Ito, Y.; Okajima, S.; Nakayama, K.; Michael, C.A.; Vyacheslavov, L.N.; Sanin, A.; et al. Interferometer Systems on Lhd. Fusion Sci. Technol. 2010, 58, 352–363. [Google Scholar] [CrossRef]
- Ito, D.; Yazawa, H.; Tomitaka, M.; Kumagai, T.; Kono, S.; Yamauchi, M.; Misawa, T.; Kobuchi, T.; Hayashi, H.; Miyake, H.; et al. Development of a Wide Dynamic Range Neutron Flux Measurement Instrument Having Fast Time Response for Fusion Experiments. Plasma Fusion Res. 2021, 16, 1405018. [Google Scholar] [CrossRef]
- Hirshman, S.P.; Betancourt, O. Preconditioned Descent Algorithm for Rapid Calculations of Magnetohydrodynamic Equilibria. J. Comput. Phys. 1991, 96, 99–109. [Google Scholar] [CrossRef]
- Murakami, S.; Nakajima, N.; Okamoto, M. Finite β Effects on the ICRF and NBI Heating in the Large Helical Device. Fusion Technol. 1995, 27, 256–259. [Google Scholar] [CrossRef]
- Spong, D.A. Three-dimensional effects on energetic particle confinement and stability. Phys. Plasmas 2011, 18, 056109. [Google Scholar] [CrossRef]
- Mikkelsen, D.R. Approximation for non-resonant beam target fusion reactivities. Nucl. Fusion 1989, 29, 1113–1115. [Google Scholar] [CrossRef]
- Bosch, H.S.; Hale, G.M. Improved Formulas for Fusion Cross-Sections and Thermal Reactivities. Nucl. Fusion 1992, 32, 611–631. [Google Scholar] [CrossRef]
- Murakami, S.; Wakasa, A.; Maaßberg, H.; Beidler, C.D.; Yamada, H.; Watanabe, K.Y.; LHD Experimental Group. Neoclassical transport optimization of LHD. Nucl. Fusion 2002, 42, L19–L22. [Google Scholar] [CrossRef]
- Sumida, S.; Shinohara, K.; Nishitani, T.; Ogawa, K.; Bando, T.; Sukegawa, A.M.; Ishikawa, M.; Takada, E.; Bierwage, A.; Oyama, N. Conceptual design of a collimator for the neutron emission profile monitor in JT-60SA using Monte Carlo simulations. Rev. Sci. Instrum. 2020, 91, 113504. [Google Scholar] [CrossRef]
- Kondo, K.; Akagi, T.; Arranz, F.; Bazin, N.; Bellan, L.; Bolzon, B.; Brañas, B.; Cara, P.; Carin, Y.; Castellanos, J.; et al. Validation of the Linear IFMIF Prototype Accelerator (LIPAc) in Rokkasho. Fusion Eng. Des. 2020, 153, 111503. [Google Scholar] [CrossRef]
- Dzitko, H.; Cara, P.; Carin, Y.; Chel, S.; Facco, A.; Gex, D.; Hasegawa, K.; Kasugai, A.; Kondo, K.; Massaut, V.; et al. Status and future developments of the Linear IFMIF Prototype Accelerator (LIPAc). Fusion Eng. Des. 2021, 168, 112621. [Google Scholar] [CrossRef]
- Hotchi, H.; Kinsho, M.; Hasegawa, K.; Hayashi, N.; Hikichi, Y.; Hiroki, S.; Kamiya, J.; Kanazawa, K.; Kawase, M.; Noda, F.; et al. Beam commissioning of the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex. Phys. Rev. Spec. Top.—Accel. Beams 2009, 12, 040402. [Google Scholar] [CrossRef]
- Moss, R.L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot. 2014, 88, 2–11. [Google Scholar] [CrossRef]
- Dymova, M.A.; Taskaev, S.Y.; Richter, V.A.; Kuligina, E.V. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun. 2020, 40, 406–421. [Google Scholar] [CrossRef]
- Ichikawa, G.; Tsuchida, K.; Kiyanagi, Y.; Ishikawa, A.; Hirata, Y.; Yoshihashi, S.; Watanabe, K.; Uritani, A.; Hamano, T.; Ogawara, R.; et al. Development of thermal neutron moderator for testing boron agents for Boron Neutron Capture Therapy (BNCT). J. Instrum. 2019, 14, T06010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, K.; Sangaroon, S.; Liao, L.Y.; Takada, E.; Isobe, M. Development of a High Sampling Rate Data Acquisition System Working in a High Pulse Count Rate Region for Radiation Diagnostics in Nuclear Fusion Plasma Research. Electronics 2023, 12, 3898. https://doi.org/10.3390/electronics12183898
Ogawa K, Sangaroon S, Liao LY, Takada E, Isobe M. Development of a High Sampling Rate Data Acquisition System Working in a High Pulse Count Rate Region for Radiation Diagnostics in Nuclear Fusion Plasma Research. Electronics. 2023; 12(18):3898. https://doi.org/10.3390/electronics12183898
Chicago/Turabian StyleOgawa, Kunihiro, Siriyaporn Sangaroon, Long Yong Liao, Eiji Takada, and Mitsutaka Isobe. 2023. "Development of a High Sampling Rate Data Acquisition System Working in a High Pulse Count Rate Region for Radiation Diagnostics in Nuclear Fusion Plasma Research" Electronics 12, no. 18: 3898. https://doi.org/10.3390/electronics12183898
APA StyleOgawa, K., Sangaroon, S., Liao, L. Y., Takada, E., & Isobe, M. (2023). Development of a High Sampling Rate Data Acquisition System Working in a High Pulse Count Rate Region for Radiation Diagnostics in Nuclear Fusion Plasma Research. Electronics, 12(18), 3898. https://doi.org/10.3390/electronics12183898