Investigation of Trap Density Effect in Gate-All-Around Field Effect Transistors Using the Finite Element Method
Abstract
:1. Introduction
2. Device Structure and Simulation Approach
2.1. Device Structure and Flow Process
- For the semiconductor equations, as boundary conditions, a constant electrostatic potential equal to Vd is applied at the drain contact and a potential equal to VG at the gate contact n = n0, p = p0, and φ = V0 at the source and drain regions, and ∇n = ∇p = ∇φ = 0 at the other boundary sides.
- For the heat conduction equation, we suppose that the devices are completely isolated. The right side, as well as the top and bottom boundaries in the GAAFET, are assumed to be adiabatic (∇T = 0). A Dirichlet boundary condition (T0 = 300 K) is adopted at the gate, implicitly assuming that the heat rapidly dissipates in metallic contacts.
- A symmetric boundary is used at the symmetry axis for the electrothermal simulation.
2.2. Model Description
2.3. Simulation Setup
- The physical domain is continuous and can be represented by a finite number of elements.
- A linear relationship between stresses, strains, and displacements exists.
- The material properties are isotropic and homogeneous.
- i.
- The Poisson equation and the continuity equations are solved iteratively, with convergence achieved.
- ii.
- The heat conduction equation is solved using a 300 K initial temperature assumption for the device to determine the temperature profile.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hisamoto, D.; Lee, W.-C.; Kedzierski, J.; Takeuchi, H.; Asano, K.; Kuo, C.; Anderson, E.; King, T.-J.; Bokor, J.; Hu, C. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 2000, 47, 2320–2325. [Google Scholar]
- Park, J.-T.; Colinge, J.-P.; Diaz, C.H. Pi-gate soi mosfet. IEEE Electron Device Lett. 2001, 22, 405–406. [Google Scholar] [CrossRef]
- Doyle, B.; Datta, S.; Doczy, M.; Hareland, S.; Jin, B.; Kavalieros, J.; Linton, T.; Murthy, A.; Rios, R.; Chau, R. High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Lett. 2003, 24, 263–265. [Google Scholar] [CrossRef]
- Yang, F.-L.; Chen, H.-Y.; Chen, F.-C.; Huang, C.-C.; Chang, C.-Y.; Chiu, H.-K.; Lee, C.-C.; Chen, C.-C.; Huang, H.-T.; Chen, C.-J. 25 nm CMOS omega FETs. In Proceedings of the Digest International Electron Devices Meeting, San Francisco, CA, USA, 8–11 December 2002; pp. 255–258. [Google Scholar]
- Monfray, S.; Skotnicki, T.; Morand, Y.; Descombes, S.; Coronel, P.; Mazoyer, P.; Harrison, S.; Ribot, P.; Talbot, A.; Dutartre, D. 50 nm-gate all around (GAA)-silicon on nothing (SON)-devices: A simple way to co-integration of GAA transistors within bulk MOSFET process. In Proceedings of the 2002 Symposium on VLSI Technology, Kyoto, Japan, 10 June 2022; Digest of Technical Papers (Cat. No. 01CH37303). pp. 108–109. [Google Scholar]
- Kumar, M.J.; Orouji, A.A.; Dhakad, H. New dual-material SG nanoscale MOSFET: Analytical threshold-voltage model. IEEE Trans. Electron Devices 2006, 53, 920–922. [Google Scholar] [CrossRef]
- Wang, H.-K.; Wu, S.; Chiang, T.-K.; Lee, M.-S. A new two-dimensional analytical threshold voltage model for short-channel triple-material surrounding-gate metal–oxide–semiconductor field-effect transistors. Jpn. J. Appl. Phys. 2012, 51, 054301. [Google Scholar] [CrossRef]
- Mo, F.; Spano, C.E.; Ardesi, Y.; Ruo Roch, M.; Piccinini, G.; Vacca, M. NS-GAAFET Compact Modeling: Technological Challenges in Sub-3-nm Circuit Performance. Electronics 2023, 12, 1487. [Google Scholar] [CrossRef]
- Karbalaei, M.; Dideban, D.; Heidari, H. A sectorial scheme of gate-all-around field effect transistor with improved electrical characteristics. Ain Shams Eng. J. 2021, 12, 755–760. [Google Scholar] [CrossRef]
- Lee, C.-C.; Huang, P.-C.; Hsiang, T.-P. Interactive Lattice and Process-Stress Responses in the Sub-7 nm Germanium-Based Three-Dimensional Transistor Architecture of FinFET and Nanowire GAAFET. IEEE Trans. Electron Devices 2022, 69, 6552–6560. [Google Scholar] [CrossRef]
- Min, J.; Shin, C. Study of line edge roughness on various types of gate-all-around field effect transistor. Semicond. Sci. Technol. 2019, 35, 015004. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, S.-H.; He, Y.-D.; Du, G. A comparative study of self-heating effects in 3nm node GAAFETs and FinFETs. In Proceedings of the 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Nanjing, China, 25–28 October 2022; pp. 1–3. [Google Scholar]
- Mohan, C.; Choudhary, S.; Prasad, B. Gate All Around FET: An Alternative of FinFET for Future Technology Nodes. Int. J. Adv. Res. Sci. Eng. 2017, 6, 563–569. [Google Scholar]
- Barraud, S.; Berthome, M.; Coquand, R.; Cassé, M.; Ernst, T.; Samson, M.-P.; Perreau, P.; Bourdelle, K.; Faynot, O.; Poiroux, T. Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm. IEEE Electron Device Lett. 2012, 33, 1225–1227. [Google Scholar] [CrossRef]
- Sallese, J.-M.; Chevillon, N.; Lallement, C.; Iniguez, B.; Prégaldiny, F. Charge-based modeling of junctionless double-gate field-effect transistors. IEEE Trans. Electron Devices 2011, 58, 2628–2637. [Google Scholar] [CrossRef]
- Yeo, K.H.; Suk, S.D.; Li, M.; Yeoh, Y.-Y.; Cho, K.H.; Hong, K.-H.; Yun, S.; Lee, M.S.; Cho, N.; Lee, K. Gate-all-around (GAA) twin silicon nanowire MOSFET (TSNWFET) with 15 nm length gate and 4 nm radius nanowires. In Proceedings of the 2006 International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 1–4. [Google Scholar]
- Dhanaselvam, P.S.; Balamurugan, N. Analytical approach of a nanoscale triple-material surrounding gate (TMSG) MOSFETs for reduced short-channel effects. Microelectron. J. 2013, 44, 400–404. [Google Scholar] [CrossRef]
- Pravin, J.C.; Nirmal, D.; Prajoon, P.; Ajayan, J. Implementation of nanoscale circuits using dual metal gate engineered nanowire MOSFET with high-k dielectrics for low power applications. Phys. E Low-Dimens. Syst. Nanostructures 2016, 83, 95–100. [Google Scholar] [CrossRef]
- Narula, M.S.; Pandey, A. A Comprehensive Review on FinFET, Gate All Around, Tunnel FET: Concept, Performance and Challenges. In Proceedings of the 2022 8th International Conference on Signal Processing and Communication (ICSC), Noida, India, 1–3 December 2022. [Google Scholar]
- Kumar, B.; Kumar, A.; Chaujar, R. The effect of gate stack and high-ĸ spacer on device performance of a Junctionless GAA FinFET. In 2020 IEEE vlsi Device Circuit and System (vlsi dcs); IEEE: Piscataway, NJ, USA, 2020; pp. 159–163. [Google Scholar]
- Alam, M.A.; Mahajan, B.K.; Chen, Y.-P.; Ahn, W.; Jiang, H.; Shin, S.H. A device-to-system perspective regarding self-heating enhanced hot carrier degradation in modern field-effect transistors: A topical review. IEEE Trans. Electron Devices 2019, 66, 4556–4565. [Google Scholar] [CrossRef]
- Bury, E.; Kaczer, B.; Roussel, P.; Ritzenthaler, R.; Raleva, K.; Vasileska, D.; Groeseneken, G. Experimental validation of self-heating simulations and projections for transistors in deeply scaled nodes. In Proceedings of the 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, USA, 1–5 June 2014; pp. XT. 8.1–XT. 8.6. [Google Scholar]
- Takahashi, T.; Matsuki, T.; Shinada, T.; Inoue, Y.; Uchida, K. Direct evaluation of self-heating effects in bulk and ultra-thin BOX SOI MOSFETs using four-terminal gate resistance technique. IEEE J. Electron Devices Soc. 2016, 4, 365–373. [Google Scholar] [CrossRef]
- Scholten, A.; Smit, G.; Pijper, R.; Tiemeijer, L.; Tuinhout, H.; Van der Steen, J.-L.; Mercha, A.; Braccioli, M.; Klaassen, D. Experimental assessment of self-heating in SOI FinFETs. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar]
- Jang, D.; Bury, E.; Ritzenthaler, R.; Bardon, M.G.; Chiarella, T.; Miyaguchi, K.; Raghavan, P.; Mocuta, A.; Groeseneken, G.; Mercha, A. Self-heating on bulk FinFET from 14nm down to 7nm node. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 11.16. 11–11.16. 14. [Google Scholar]
- Ahn, W.; Shin, S.H.; Jiang, C.; Jiang, H.; Wahab, M.; Alam, M.A. Integrated modeling of self-heating of confined geometry (FinFET, NWFET, and NSHFET) transistors and its implications for the reliability of sub-20 nm modern integrated circuits. Microelectron. Reliab. 2018, 81, 262–273. [Google Scholar] [CrossRef]
- Jiang, H.; Shin, S.; Liu, X.; Zhang, X.; Alam, M.A. The impact of self-heating on HCI reliability in high-performance digital circuits. IEEE Electron Device Lett. 2017, 38, 430–433. [Google Scholar] [CrossRef]
- Koh, M.; Mizubayashi, W.; Iwamoto, K.; Murakami, H.; Ono, T.; Tsuno, M.; Mihara, T.; Shibahara, K.; Miyazaki, S.; Hirose, M. Limit of gate oxide thickness scaling in MOSFETs due to apparent threshold voltage fluctuation induced by tunnel leakage current. IEEE Trans. Electron Devices 2001, 48, 259–264. [Google Scholar] [CrossRef]
- Pimbley, J.M.; Meindl, J.D. MOSFET scaling limits determined by subthreshold conduction. IEEE Trans. Electron Devices 1989, 36, 1711–1721. [Google Scholar] [CrossRef]
- Seo, K.-I.; Haran, B.; Gupta, D.; Guo, D.; Standaert, T.; Xie, R.; Shang, H.; Alptekin, E.; Bae, D.-I.; Bae, G. A 10nm platform technology for low power and high performance application featuring FINFET devices with multi workfunction gate stack on bulk and SOI. In Proceedings of the 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, USA, 9–12 June 2014. [Google Scholar]
- Zeitzoff, P.M. MOSFET scaling trends and challenges through the end of the roadmap. In Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No. 04CH37571), Orlando, FL, USA, 3–6 October 2004; pp. 233–240. [Google Scholar]
- Echouchene, F.; Belmabrouk, H. Effect of Temperature Jump on Nonequilibrium Entropy Generation in a MOSFET Transistor Using Dual-Phase-Lagging Model. J. Heat Transf. 2017, 139, 122007. [Google Scholar] [CrossRef]
- Echouchene, F.; Mabrouk, H.B. Non equilibrium entropy generation in nano scale MOSFET transistor based a nonlinear DPL heat conduction model. In Proceedings of the 2018 9th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 20–22 March 2018; pp. 1–6. [Google Scholar]
- Junior, N.G.; Costa, F.J.; Trevisoli, R.; Barraud, S.; Doria, R.T. Influence of interface traps density and temperature variation on the NBTI effect in p-Type junctionless nanowire transistors. Solid-State Electron. 2021, 186, 108097. [Google Scholar]
- Belkhiria, M.; Echouchene, F.; Jaba, N.; Bajahzar, A.; Belmabrouk, H. Impact of high-k gate dielectric on self-heating effects in PiFETs structure. IEEE Trans. Electron Devices 2020, 67, 3522–3529. [Google Scholar] [CrossRef]
- Li, J.; Pud, S.; Petrychuk, M.; Offenhausser, A.; Vitusevich, S. Sensitivity enhancement of Si nanowire field effect transistor biosensors using single trap phenomena. Nano Lett. 2014, 14, 3504–3509. [Google Scholar] [CrossRef]
- Yoon, J.-S.; Kim, K.; Rim, T.; Baek, C.-K. Performance and variations induced by single interface trap of nanowire FETs at 7-nm node. IEEE Trans. Electron Devices 2016, 64, 339–345. [Google Scholar] [CrossRef]
- Kalb, W.L.; Batlogg, B. Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods. Phys. Rev. B 2010, 81, 035327. [Google Scholar] [CrossRef]
- Sai, P.; Jorudas, J.; Dub, M.; Sakowicz, M.; Jakštas, V.; But, D.; Prystawko, P.; Cywinski, G.; Kašalynas, I.; Knap, W. Low frequency noise and trap density in GaN/AlGaN field effect transistors. Appl. Phys. Lett. 2019, 115, 183501. [Google Scholar] [CrossRef]
- Kumar, N.; Raman, A. Performance assessment of the charge-plasma-based cylindrical GAA vertical nanowire TFET with impact of interface trap charges. IEEE Trans. Electron Devices 2019, 66, 4453–4460. [Google Scholar] [CrossRef]
- Pala, M.G.; Esseni, D. Interface traps in InAs nanowire tunnel-FETs and MOSFETs—Part I: Model description and single trap analysis in tunnel-FETs. IEEE Trans. Electron Devices 2013, 60, 2795–2801. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Nithiarasu, P.; Zhu, J. The Finite Element Method; McGraw-hill London: London, UK, 1977; Volume 3. [Google Scholar]
- Sewell, G. Analysis of a Finite Element Method: PDE/PROTRAN; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Pratap, Y.; Ghosh, P.; Haldar, S.; Gupta, R.; Gupta, M. An analytical subthreshold current modeling of cylindrical gate all around (CGAA) MOSFET incorporating the influence of device design engineering. Microelectron. J. 2014, 45, 408–415. [Google Scholar] [CrossRef]
- Ajay, B.; Gadicha, V.B.G. Om Prakash Jena Mechanism to protect Decentralized Transaction Using Blockchain Technology. In Machine Learning Adoption in Blockchain-Based Intelligent Manufacturing: Theoretical Basics, Applications, and Challenges; Taylor & Francis Publication: Abingdon, UK, 2021. [Google Scholar]
- Sibabrata Mohanty, K.C.R.a.O.P.J. Implementation of Total Productive Maintenance (TPM) in Manufacturing Industry for Improving Production Effectiveness. In Industrial Transformation: Implementation and Essential Components and Processes of Digital Systems; Taylor & Francis Publication: Abingdon, UK, 2021. [Google Scholar]
- Reddy, J.N. Introduction to the Finite Element Method; McGraw-Hill Education: London, UK, 2019. [Google Scholar]
- Zlámal, M. Finite element solution of the fundamental equations of semiconductor devices. I. Math. Comput. 1986, 46, 27–43. [Google Scholar] [CrossRef]
- Lin, P.T.; Shadid, J.N.; Sala, M.; Tuminaro, R.S.; Hennigan, G.L.; Hoekstra, R.J. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling. J. Comput. Phys. 2009, 228, 6250–6267. [Google Scholar] [CrossRef]
- Belkhiria, M.; Echouchene, F.; Jaba, N.; Bajahzar, A.; Belmabrouk, H. 2-D-Nonlinear Electrothermal Model for Investigating the Self-Heating Effect in GAAFET Transistors. IEEE Trans. Electron Devices 2021, 68, 954–961. [Google Scholar] [CrossRef]
- Jemii, E.; Belkhiria, M.; Aouaini, F.; Echouchene, F.; Alyousef, H. Electrothermal analyses in Cu/ZrO2/Pt CBRAM memory using a dual-phase-lag model. J. Comput. Electron. 2022, 21, 792–801. [Google Scholar] [CrossRef]
- Han, K.; Long, S.; Deng, Z.; Zhang, Y.; Li, J. A novel germanium-around-source gate-all-around tunnelling field-effect transistor for low-power applications. Micromachines 2020, 11, 164. [Google Scholar] [CrossRef]
- Jagota, V.; Sethi, A.P.S.; Kumar, K. Finite element method: An overview. Walailak J. Sci. Technol. (WJST) 2013, 10, 1–8. [Google Scholar]
- de Arantes e Oliveira, E.R. The patch test and the general convergence criteria of the finite element method. Int. J. Solids Struct. 1977, 13, 159–178. [Google Scholar] [CrossRef]
- Singh, S.; Solay, L.R.; Anand, S.; Kumar, N.; Ranjan, R.; Singh, A. Implementation of Gate-All-Around Gate-Engineered Charge Plasma Nanowire FET-Based Common Source Amplifier. Micromachines 2023, 14, 1357. [Google Scholar] [CrossRef]
- Singh, N.; Agarwal, A.; Bera, L.; Liow, T.; Yang, R.; Rustagi, S.; Tung, C.; Kumar, R.; Lo, G.; Balasubramanian, N. High-performance fully depleted silicon nanowire (diameter/spl les/5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett. 2006, 27, 383–386. [Google Scholar] [CrossRef]
- Zaini, M.; Mohd Sarjidan, M.; Abd, W. The effect of trap density on the trapping and de-trapping processes in determining the turn-on voltage of double-carrier organic light-emitting devices (OLEDs). J. Electron. Mater. 2021, 50, 4511–4523. [Google Scholar] [CrossRef]
Node | Best Device | Issue | Solution |
---|---|---|---|
<0.1 µm | Bulk MOSFET | SCE, low drive current |
|
0.1 µm–32 µm | SOI MOSFET | Power leakage current |
|
32 µm–10 nm | FinFET | SCE are prominent |
|
<10 nm | GAA | Power, cost |
|
Materials | λ (Wm−3K−1) | C (MJm−3K−1) | ε |
---|---|---|---|
Si | 150 | 15 | 11.8 |
Al2O3 | 35 | 2.89 | 10 |
Parameters | Description |
---|---|
V | Voltage |
q | Electron charge |
Ε | Semiconductor permittivity |
p | Hole concentration |
n | Electron concentration |
T | Temperature |
C | Volumetric heat capacity |
λ | Thermal conductivity |
H | Heat source |
Jn,p | Electron and hole current densities |
Dn,p | Electron and hole diffusion coefficients |
n,p | Electron and hole drift velocities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belkhiria, M.; Aouaini, F.; A. Aldaghfag, S.; Echouchene, F.; Belmabrouk, H. Investigation of Trap Density Effect in Gate-All-Around Field Effect Transistors Using the Finite Element Method. Electronics 2023, 12, 3673. https://doi.org/10.3390/electronics12173673
Belkhiria M, Aouaini F, A. Aldaghfag S, Echouchene F, Belmabrouk H. Investigation of Trap Density Effect in Gate-All-Around Field Effect Transistors Using the Finite Element Method. Electronics. 2023; 12(17):3673. https://doi.org/10.3390/electronics12173673
Chicago/Turabian StyleBelkhiria, Maissa, Fatma Aouaini, Shatha A. Aldaghfag, Fraj Echouchene, and Hafedh Belmabrouk. 2023. "Investigation of Trap Density Effect in Gate-All-Around Field Effect Transistors Using the Finite Element Method" Electronics 12, no. 17: 3673. https://doi.org/10.3390/electronics12173673
APA StyleBelkhiria, M., Aouaini, F., A. Aldaghfag, S., Echouchene, F., & Belmabrouk, H. (2023). Investigation of Trap Density Effect in Gate-All-Around Field Effect Transistors Using the Finite Element Method. Electronics, 12(17), 3673. https://doi.org/10.3390/electronics12173673