Path Planning for Mount Robot Based on Improved Particle Swarm Optimization Algorithm
Abstract
:1. Introduction
2. Mathematical Model
2.1. Analysis of Mount Process
2.2. Establishment of Optimization Objectives
3. Path Planning Based on Improved PSO Algorithm
3.1. Establishment of Environmental Maps
3.2. Improved PSO Algorithm
3.2.1. Inertia Weight Design
3.2.2. Dynamic Learning Factor Design
3.2.3. Processing of Local Optimal Solutions
Algorithm 1: Improved PSO framework |
1: Set the population size, maximum iteration times iternum, maximum and minimum of inertia weights 2: Initialize particle position and velocity 3: Calculate the fitness value fit of the initial population, update the optimal particle mounting order Gbest (1) and the minimum fitness value of the population Gbest_ fit (1) 4: while iter < iternum 5: sort the elite, high-quality and low-quality groups 6: Calculate , c1, c2 7: for i = 1 to size 8: Calculate the new particle velocity v(i) 9: Calculate the new position pop() 10: Calculate the new fit and the variance fit_var 11: if fit_var < 1000 12: Generate a new population 13: Calculate fit of the new population 14: for i = 1 to size 15: if fit(i) < Pbest_fit(i) Pbest_fit (i) = fit(i); Pbest (i) = pop(i); end 16: [maxvalue,max_index] = min(fit) 17: if max value < Gbest_fit(iter-1) Gbest_fit(iter) = max value; Gbest(iter) = pop(max_index); else Gbest_fit(iter) = Gbest_fit(iter-1); Gbest(iter) = Gbest(iter-1) 18: iter = iter + 1 19: Output minimum Gbest_fit and the corresponding index 20: Output Gbest(index) |
4. Simulation Experiment Analysis
4.1. Algorithm Parameter Settings
4.2. Convergence Performance Analysis
4.3. Convergence Performance Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, Q.; Cao, L.; Wan, T.; Wang, L.; Xu, S.; Li, X. Optimization of mounting path for arch style mounting machine. J. Chongqing Univ. 2022, 45, 51–60. [Google Scholar]
- Yin, L.; Gao, L.; Li, D.; Hu, M. Component mount optimization for turret mounting machine based on improved cellular genetic algorithm. J. Huazhong Univ. Sci. Technol. 2015, 43, 113–117+132. [Google Scholar]
- Lu, T.; Yu, Z.; Zheng, X. Dual-gantry mounting machine scheduling based on cellular bat algorithm. Mod. Manuf. Eng. 2017, 444, 22–28+101. [Google Scholar]
- Zhang, S.; Guo, G. Review of multiple traveling salesman model and its application. J. Front. Comput. Sci. Technol. 2022, 16, 1516–1528. [Google Scholar]
- Qin, X.; Zong, Q.; Li, X.Y.; Zhang, B.Y.; Zhang, X.Y. Task allocation of multi-robot based on improved ant colony algorithm. Aerosp. Control Appl. 2018, 44, 55–59. [Google Scholar]
- Wang, Y. The hybrid genetic algorithm with two local optimization strategies for traveling salesman problem. Comput. Ind. Eng. 2014, 70, 124–133. [Google Scholar] [CrossRef]
- Qiao, S.; Lv, Z.; Zhang, N. Improved particle swarm optimization algorithm based on hamming distance for traveling salesman problem. J. Comput. Appl. 2014, 70, 124–133. [Google Scholar]
- Lin, Y.; Bian, Z.Y.; Liu, X. Developing a dynamic neighborhood structure for an adaptive hybrid simulated annealing-tabu search algorithm to solve the symmetrical traveling salesman problem. Appl. Soft Comput. 2016, 49, 937–952. [Google Scholar] [CrossRef]
- Xu, L.; Song, B.Y.; Cao, M.Y. An improved particle swarm optimization algorithm with adaptive weighted delay velocity. Syst. Sci. Control Eng. 2021, 9, 188–197. [Google Scholar] [CrossRef]
- Qiang, N.; Kang, F. Application of a new acceleration particle swarm optimization for solving multiple traveling salesman problems. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 2015, 43, 36–42. [Google Scholar]
- Tang, Y.; Wang, Z.D.; Fang, J.A. Feedback learning particle swarm optimization. Appl. Soft Comput. 2011, 11, 4713–4725. [Google Scholar] [CrossRef] [Green Version]
- Das, P.K.; Jena, P.K. Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators. Appl. Soft Comput. 2020, 92, 106312–106336. [Google Scholar] [CrossRef]
- Duan, Q.; Xin, S. Robot trajectory planning based on improved hybrid particle swarm optimization. Mach. Tool Hydraul. 2022, 50, 50–56. [Google Scholar]
- Tian, S.; Li, Y.; Li, J.; Liu, G. Robot global path planning using PSO algorithm based on the interaction mechanism between leaders and individuals. J. Intell. Fuzzy Syst. 2020, 39, 4925–4933. [Google Scholar] [CrossRef]
- Tao, Y.; Wen, Y.; Gao, H.; Wang, T.; Wan, J.; Lan, J. A Path-Planning Method for Wall Surface Inspection Robot Based on Improved Genetic Algorithm. Electronics 2022, 11, 1192. [Google Scholar] [CrossRef]
- Gao, R.; Zhou, Q.; Cao, S.; Jiang, Q. Apple-Picking Robot Picking Path Planning Algorithm Based on Improved PSO. Electronics 2023, 12, 1832. [Google Scholar] [CrossRef]
- Anbarkhan, S.H.; Rakrouki, M.A. An Enhanced PSO Algorithm for Scheduling Workflow Tasks in Cloud Computing. Electronics 2023, 12, 2580. [Google Scholar] [CrossRef]
- Liu, L.; Xu, H.; Wang, B.; Zhang, R.; Chen, J. A Study on Particle Swarm Algorithm Based on Restart Strategy and Adaptive Dynamic Mechanism. Electronics 2022, 11, 2339. [Google Scholar] [CrossRef]
- Gul, F.; Mir, A.; Mir, I.; Mir, S.; Islaam, T.U.; Abualigah, L.; Forestiero, A. A Centralized Strategy for Multi-Agent Exploration. IEEE Access 2022, 10, 126871–126884. [Google Scholar] [CrossRef]
- Halim, H.E.; Mohamed, A.E.; Diego, O.; Laith, A. Aquila Optimizer Based PSO Swarm Intelligence for IoT Task Scheduling Application in Cloud Computing. Integr. Meta-Heuristics Mach. Learn. Real-World Optim. Probl. 2022, 1038, 481–497. [Google Scholar]
- Zeng, N.; Wang, Z.; Liu, W.; Zhang, H.; Hone, K.; Liu, X. A Dynamic Neighborhood-Based Switching Particle Swarm Optimization Algorithm. IEEE Trans. Cybern. 2022, 52, 9290–9301. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.H.; Kumar, D.P.; Sucheta, P. Optimal path planning of multi-robot in dynamic environment using hybridization of meta-heuristic algorithm. Int. J. Intell. Robot. Appl. 2022, 6, 625–667. [Google Scholar]
- Lin, S.; Liu, A.; Wang, J.; Kong, X. An intelligence-based hybrid PSO-SA for mobile robot path planning in warehouse. J. Comput. Sci. 2023, 67, 101938. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, D.; Yun, J.; Sun, Y.; Li, C.; Jiang, G.; Kong, J.; Tao, B.; Fang, Z. Self-Tuning Control of Manipulator Positioning Based on Fuzzy PID and PSO Algorithm. Front. Bioeng. Biotechnol. 2022, 9, 817723. [Google Scholar] [CrossRef]
- Zhou, H.L.; Song, M.L.; Pedrycz, W. A comparative study of improved GA and PSO in solving multiple traveling salesmen problem. Appl. Soft Comput. 2018, 64, 564–580. [Google Scholar] [CrossRef]
- Sun, K.; Riedel, C.A.; Urbani, A.; Simeoni, M.; Mengali, S.; Zalkovskij, M.; Bilenberg, B.; de Groot, C.; Muskens, O.L. VO2 thermochromic metamaterial-based smart optical solar reflector. ACS Photonics 2018, 5, 2280–2286. [Google Scholar] [CrossRef]
- Heydari, V.; Bahreini, Z. Synthesis of silica-supported ZnO pigments for thermal control coatings and analysis of their reflection model. J. Coat. Technol. Res. 2018, 15, 223–230. [Google Scholar] [CrossRef]
- He, J.; Cen, Y.; Li, Y.; Alelaumi, S.M.; Won, D. A novel mounting method for mini-scale passive components in surface mount technology. Int. J. Adv. Manuf. Technol. 2021, 115, 1475–1485. [Google Scholar] [CrossRef]
- Castellani, M.; Otri, S.; Pham, D.T. Printed circuit board assembly time minimisation using a novel bees algorithm. Comput. Ind. Eng. 2019, 133, 186–194. [Google Scholar] [CrossRef]
- Hsu, H.P. Printed circuit board assembly planning for multi-head gantry SMT machine using multi-swarm and discrete firefly algorithm. IEEE Access 2020, 9, 1642–1654. [Google Scholar] [CrossRef]
- Gan, R.; Guo, Q.; Chang, H.; Yi, Y. Improved ant colony optimization algorithm for the traveling salesman problems. J. Syst. Eng. Electron. 2010, 21, 329–333. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Shuai, K.; Zhu, W.; Chen, B.; Chen, K. Multi-objective trajectory planning method based on the improved elitist non-dominated sorting genetic algorithm. Chin. J. Mech. Eng. 2022, 35, 7. [Google Scholar] [CrossRef]
- Shim, J.H.; Nam, T.H. Machine vision based automatic measurement algorithm of concentricity for large size mechanical parts. J. Phys. Conf. Ser. 2017, 806, 012002. [Google Scholar] [CrossRef]
- Kumar, R.; Luo, Z. Optimizing the operation sequence of a chip placement machine using TSP model. IEEE Trans. Electron. Packag. Manuf. 2003, 26, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Torabi, S.A.; Hamedi, M.; Ashayeri, J. A new optimization approach for nozzle selection and component allocation in multi-head beam-type SMD placement machines. J. Manuf. Syst. 2013, 32, 700–714. [Google Scholar] [CrossRef]
- Seth, A.; Klabjan, D.; Ferreira, P.M. A new novel local search integer-programming-based heuristic for PCB assembly on collect-and-place machines. Math. Program. Comput. 2016, 8, 1–45. [Google Scholar] [CrossRef]
- Wang, W.C.; Chen, S.L.; Chen, L.B.; Chang, W.J. A machine vision based automatic optical inspection system for measuring drilling quality of printed circuit boards. IEEE Access 2017, 5, 10817–10833. [Google Scholar] [CrossRef]
f’ | |||||||
---|---|---|---|---|---|---|---|
NB | NM | NS | O | PS | PM | PB | |
NB | PB | PM | O | NS | NM | NM | NB |
NM | PS | O | NS | NS | NB | NB | NB |
NS | O | NS | NS | NM | NB | NB | NB |
O | NS | NS | NS | NM | NM | NB | NB |
PS | NS | NS | NM | NM | NM | NB | NB |
PM | NS | NM | NM | NM | NB | NB | NB |
PB | NM | NM | NM | NB | NB | NB | NB |
Map | Algorithm | Max Path (×102 mm) | Min Path (×102 mm) | Average Path (×102 mm) | Variance |
---|---|---|---|---|---|
Map 1 | PSO | 936.56 | 889.13 | 907.74 | 337.80 |
GA | 931.39 | 887.64 | 902.98 | 183.25 | |
Ours | 919.57 | 882.38 | 897.21 | 149.15 | |
Map 2 | PSO | 1221.29 | 1179.09 | 1197.56 | 172.80 |
GA | 1180.22 | 1149.19 | 1158.48 | 74.38 | |
Ours | 1126.71 | 1103.92 | 1114.15 | 50.13 | |
Map 3 | PSO | 1457.25 | 1397.45 | 1428.21 | 272.19 |
GA | 1348.14 | 1311.65 | 1332.57 | 150.79 | |
Ours | 1294.94 | 1267.87 | 1281.06 | 78.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tian, B.; Hou, S.; Li, X.; Li, Y.; Liu, C.; Li, J. Path Planning for Mount Robot Based on Improved Particle Swarm Optimization Algorithm. Electronics 2023, 12, 3289. https://doi.org/10.3390/electronics12153289
Li X, Tian B, Hou S, Li X, Li Y, Liu C, Li J. Path Planning for Mount Robot Based on Improved Particle Swarm Optimization Algorithm. Electronics. 2023; 12(15):3289. https://doi.org/10.3390/electronics12153289
Chicago/Turabian StyleLi, Xudong, Bin Tian, Shuaidong Hou, Xinxin Li, Yang Li, Chong Liu, and Jingmin Li. 2023. "Path Planning for Mount Robot Based on Improved Particle Swarm Optimization Algorithm" Electronics 12, no. 15: 3289. https://doi.org/10.3390/electronics12153289
APA StyleLi, X., Tian, B., Hou, S., Li, X., Li, Y., Liu, C., & Li, J. (2023). Path Planning for Mount Robot Based on Improved Particle Swarm Optimization Algorithm. Electronics, 12(15), 3289. https://doi.org/10.3390/electronics12153289