Designing Large Two-Dimensional Arrays of Josephson Junctions for RF Magnetic Field Detection
Abstract
:1. Introduction
2. Principle
3. Model
4. Results
4.1. Micrometer-Scale Circuits
4.2. Submicrometer-Scale Circuits
4.3. Dependence on Material Properties
5. Discussion
6. Conclusions
7. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
JJ | Josephson junction |
LJJ | Long Josephson junction |
References
- Clarke, J.; Braginski, A.I. (Eds.) The SQUID Handbook Vol. I: Fundamentals and Technology of SQUIDs and SQUID Systems; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2004. [Google Scholar]
- Seidel, P. (Ed.) Applied Superconductivity: Handbook on Devices and Applications; Wiley: Weinheim, Germany, 2015. [Google Scholar]
- Clarke, J. Superconducting quantum interference devices for low frequency measurements. In Superconductor Applications: SQUIDs and Machines; Schwartz, B.B., Foner, S., Eds.; Plenum: New York, NY, USA, 1977. [Google Scholar]
- Vettoliere, A.; Silvestrini, P.; Granata, C. Superconducting quantum magnetic sensing. In Quantum Materials, Devices, and Applications; Henini, M., Oliveira Rodrigues, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Cybart, S.A.; Herr, A.; Kornev, V.; Foley, C.P. Do multiple Josephson junctions make better devices? Supercond. Sci. Technol. 2017, 30, 090201. [Google Scholar] [CrossRef]
- Oppenländer, J.; Caputo, P.; Häussler, C.; Träuble, T.; Tomes, J.; Friesch, A.; Schopohl, N. Effects of magnetic field on two-dimensional superconducting quantum interference filters. Appl. Phys. Lett. 2003, 83, 969–971. [Google Scholar] [CrossRef]
- Drung, D.; Assmann, C.; Beyer, J.; Peters, M.; Ruede, F.; Schurig, T. DC SQUID Readout Electronics With Up to 100 MHz Closed-Loop Bandwidth. IEEE Trans. Appl. Supercond. 2005, 15, 777–780. [Google Scholar] [CrossRef]
- Kornev, V.K.; Kolotinskiy, N.V.; Skripka, V.A.; Sharafiev, A.V.; Mukhanov, O.A. Output power and loading of superconducting quantum array. IEEE Trans. Appl. Supercond. 2015, 25, 1602005. [Google Scholar] [CrossRef]
- Mitchell, E.E.; Müller, K.-H.; Purches, W.E.; Keenan, S.T.; Lewis, C.J.; Foley, C.P. Quantum interference effects in 1D parallel high-Tc SQUID arrays with finite inductance. Supercond. Sci. Technol. 2019, 32, 124002. [Google Scholar] [CrossRef]
- Oswald, D. Current and current density distribution in parallel superconducting wires in a planar array in the Meissner state. Cryogenics 1973, 13, 290–298. [Google Scholar] [CrossRef]
- Crété, D.; Lemaître, Y.; Marcilhac, B.; Trastoy, J.; Ulysse, C. Effect of self-induced flux in parallel arrays of Josephson junctions. In Proceedings of the IEEE International Superconductive Electronics Conference (ISEC), Riverside, CA, USA, 28 July–1 August 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Barone, A.; Paternò, G. Physics and Applications of the Josephson Effect, 2nd ed.; J. Wiley & Sons: New York, NY, USA, 1982; Chapter 5. [Google Scholar]
- Weihnacht, M. Influence of Film Thickness on D.C. Josephson Current. Phys. Status Solidi B. 1969, 32, 169–172. [Google Scholar] [CrossRef]
- FreeFEM++. Available online: https://freefem.org/ (accessed on 23 May 2023).
- Alsop, L.E.; Goodman, A.S.; Gustavson, F.G.; Miranker, W.L. A Numerical Solution of a Model for a Superconductor Field Problem. J. Comput. Phys. 1979, 31, 216–239. [Google Scholar] [CrossRef]
- Khapaev, M.M.; Kupriyanov, M.Y.; Bakurskiy, S.V.; Klenov, N.V.; Soloviev, I.I. Modeling Superconducter SFN-Structures Using the Finite Element Method. Differ. Equat. 2020, 56, 959–967. [Google Scholar] [CrossRef]
Aligned | Aligned | m | ||||
---|---|---|---|---|---|---|
Branch Nbr. | Upper Layer (%) | Lower Layer (%) | Upper Layer (%) | Lower Layer (%) | Upper Layer (%) | Lower Layer (%) |
1 | 14.2654 | −14.2654 | 9.05833 | −9.05837 | 9.03718 | −9.16116 |
2 | 14.2908 | −14.2908 | 9.09035 | −9.09033 | 9.08054 | −9.09618 |
3 | 14.2955 | −14.2955 | 9.09795 | −9.09793 | 9.08699 | −9.09087 |
4 | 14.2964 | −14.2964 | 9.10092 | −9.10092 | 9.08877 | −9.08988 |
5 | 14.2955 | −14.2955 | 9.10217 | −9.10218 | 9.08928 | −9.08975 |
6 | 14.2908 | −14.2908 | 9.10263 | −9.10261 | 9.08953 | −9.8949 |
7 | 14.2654 | −14.2654 | 9.10219 | −9.10220 | 9.08976 | −9.08934 |
8 | 9.10093 | −9.10088 | 9.08992 | −9.08879 | ||
9 | 9.09791 | −9.09792 | 9.09076 | −9.08695 | ||
10 | 9.0903 | −9.09032 | 9.09619 | −9.08045 | ||
11 | 9.05842 | −9.05843 | 9.16116 | −9.03722 |
Branch Nbr. | Upper Layer (%) | Lower Layer (%) |
---|---|---|
1 | 8.767 | −9.388 |
2 | 8.948 | −9.237 |
3 | 9.018 | −9.168 |
4 | 9.055 | −9.133 |
5 | 9.078 | −9.113 |
6 | 9.095 | −9.095 |
7 | 9.113 | −9.078 |
8 | 9.133 | −9.055 |
9 | 9.168 | −9.018 |
10 | 9.237 | −8.948 |
11 | 9.389 | −8.767 |
m | m | |||
---|---|---|---|---|
Branch Nbr. | Upper Layer (%) | Lower Layer (%) | Upper Layer (%) | Lower Layer (%) |
1 | 9.03718 | −9.16116 | 8.93331 | −9.29025 |
2 | 9.08054 | −9.09618 | 9.05521 | −9.11825 |
3 | 9.08699 | −9.09087 | 9.07706 | −9.09461 |
4 | 9.08877 | −9.08988 | 9.08333 | −9.08884 |
5 | 9.08928 | −9.08975 | 9.08542 | −9.08744 |
6 | 9.08953 | −9.8949 | 9.08642 | −9.08638 |
7 | 9.08976 | −9.08934 | 9.08746 | −9.08556 |
8 | 9.08992 | −9.08879 | 9.08904 | −9.08339 |
9 | 9.09076 | −9.08695 | 9.09424 | −9.07695 |
10 | 9.09619 | −9.08045 | 9.11827 | −9.055 |
11 | 9.16116 | −9.03722 | 9.29025 | −8.93339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crété, D.G.; Menouni, S.; Trastoy, J.; Mesoraca, S.; Kermorvant, J.; Lemaître, Y.; Marcilhac, B.; Ulysse, C. Designing Large Two-Dimensional Arrays of Josephson Junctions for RF Magnetic Field Detection. Electronics 2023, 12, 3239. https://doi.org/10.3390/electronics12153239
Crété DG, Menouni S, Trastoy J, Mesoraca S, Kermorvant J, Lemaître Y, Marcilhac B, Ulysse C. Designing Large Two-Dimensional Arrays of Josephson Junctions for RF Magnetic Field Detection. Electronics. 2023; 12(15):3239. https://doi.org/10.3390/electronics12153239
Chicago/Turabian StyleCrété, Denis Gérard, Sarah Menouni, Juan Trastoy, Salvatore Mesoraca, Julien Kermorvant, Yves Lemaître, Bruno Marcilhac, and Christian Ulysse. 2023. "Designing Large Two-Dimensional Arrays of Josephson Junctions for RF Magnetic Field Detection" Electronics 12, no. 15: 3239. https://doi.org/10.3390/electronics12153239
APA StyleCrété, D. G., Menouni, S., Trastoy, J., Mesoraca, S., Kermorvant, J., Lemaître, Y., Marcilhac, B., & Ulysse, C. (2023). Designing Large Two-Dimensional Arrays of Josephson Junctions for RF Magnetic Field Detection. Electronics, 12(15), 3239. https://doi.org/10.3390/electronics12153239