Towards Enabling Haptic Communications over 6G: Issues and Challenges
Abstract
:1. Introduction
- The issues and challenges of TI that enable haptic communication in the mobile cellular generations are investigated.
- The proposed technologies and role of fog and edge computing as a unique architectural feature of the TI are discussed.
- Multiple performance evaluation parameters of TI are analyzed.
- Multiple applications of TI are discussed.
- Advantages and challenges of aerial, ground, and underwater communication technologies for 6G are discussed.
- Issues and challenges of TI over 6G are investigated.
2. Resource Allocation in Tactile Internet
3. Channel Modeling
4. Haptic Communications Security
5. Communication Protocols
6. Performance Evaluation Parameters
7. Virtual Reality
8. Advantages and Challenges of Communication Technologies
8.1. Advantages of Aerial Communication in 6G
- Wide coverage: aerial communication technologies can cover large geographical areas, making them useful for long-distance communication and for providing coverage in remote or hard-to-reach areas [92].
- High speed: aerial communication technologies are expected to offer significantly higher speeds in 6G networks, making them suitable for applications that require fast communication [93].
- Flexibility: aerial communication technologies can be easily deployed and relocated, making them suitable for use in dynamic environments [94].
- High capacity: aerial communication technologies are expected to offer significantly higher capacity in 6G networks, which can support the transmission of large amounts of data [95].
8.2. Challenges of Aerial Communication in 6G
- Interference: aerial communication technologies are vulnerable to interference from other sources, such as other wireless devices or physical obstacles [96].
- Limited bandwidth: the available bandwidth for aerial communication is limited, which can affect the quality and capacity of the communication [97].
- Weather: aerial communication technologies can be affected by weather conditions, such as rain, fog, and thunderstorms, which can reduce the quality and reliability of the communication [98].
- Security: aerial communication technologies are generally less secure than ground-based technologies, as they are easier to intercept or disrupt [99].
- Energy efficiency: aerial communication technologies can be energy-intensive, which can be a challenge for applications that require long-term or continuous operation [100].
8.3. Advantages of Ground Communication in 6G
- Reliability: ground communication technologies are generally more reliable than aerial communication technologies, as they are less vulnerable to interference and weather conditions [101].
- Security: ground communication technologies are generally more secure than aerial communication technologies, as they are harder to intercept or disrupt [102].
- High bandwidth: ground communication technologies are expected to offer significantly higher bandwidth in 6G networks, which can support high-quality and high-capacity communication [103].
- Low latency: ground communication technologies can offer low latency, which is important for applications that require real-time communication [104].
8.4. Challenges of Ground Communication in 6G
- Limited coverage: ground communication technologies are limited to the physical location of the cables or wires, which can make it difficult to provide coverage in remote or hard-to-reach areas [105].
- Inflexibility: ground communication technologies are generally less flexible than aerial communication technologies, as they require the physical installation and maintenance of cables or wires [105].
- Cost: the installation and maintenance of ground communication technologies can be costly, especially in large or complex networks [105].
- Vulnerability to physical damage: ground communication technologies are vulnerable to physical damage, such as cuts or breaks in the cables or wires, which can disrupt the communication [105].
- Limited mobility: ground communication technologies are generally less mobile than aerial communication technologies, as they are tethered to the ground [105].
8.5. Advantages of Underwater Communication in 6G
- Security: underwater communication technologies are generally more secure than aerial or ground communication technologies, as they are harder to intercept or disrupt [106].
- Low interference: underwater communication technologies are less vulnerable to interference from other sources, as there are fewer sources of interference [106].
- Long range: underwater communication technologies can support long-range communication, as sound waves can travel long distances through water [106].
- High data rates: underwater communication technologies are expected to offer significantly higher data rates in 6G networks, which can support the transmission of large amounts of data in real-time [106].
8.6. Challenges of Underwater Communication in 6G
- Limited coverage: underwater communication technologies are limited to the physical location of the water, which can make it difficult to provide coverage in areas that are not near bodies of water [107].
- Complexity: underwater communication technologies can be complex to design and implement, as they need to account for the unique properties of water and the underwater environment [107].
- Cost: underwater communication technologies can be costly to develop and maintain, due to the specialized equipment and expertise required [107].
- Environmental factors: underwater communication technologies can be affected by environmental factors such as temperature, pressure, and salinity, which can affect the quality and reliability of the communication [107].
- Limited bandwidth: the available bandwidth for underwater communication is generally limited, which can affect the capacity and quality of the communication [107].
- Latency: underwater communication technologies can have high latency due to the slow speed of sound in water, which can be a challenge for applications that require real-time communication [107].
9. Applications of Tactile Internet
9.1. Healthcare
9.2. Telesurgery
9.3. Autonomous Driving
9.4. Virtual and Augmented Reality
9.5. Industrial Automation
10. Enabling Haptic Communication over 6G Mobile Networks
11. Issues and Challenges of Tactile Internet over 6G
11.1. Protocol Design
11.2. Data Compaction
11.3. Haptic Devices
11.4. High Accuracy
11.5. Multi-Model Sensory Information
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- You, X.; Wang, C.-X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J. Towards 6G Wireless Communication Networks: Vision, Enabling Technologies, and New Paradigm Shifts. Sci. China Inf. Sci. 2021, 64, 110301. [Google Scholar] [CrossRef]
- Weon, I.-S.; Lee, S.-G. Intelligent Robotic Walker with Actively Controlled Human Interaction. ETRI J. 2018, 40, 522–530. [Google Scholar] [CrossRef]
- Alam, M.M.; Malik, H.; Khan, M.I.; Pardy, T.; Kuusik, A.; Le Moullec, Y. A Survey on the Roles of Communication Technologies in IoT-Based Personalized Healthcare Applications. IEEE Access 2018, 6, 36611–36631. [Google Scholar] [CrossRef]
- Gómez-Barroso, J.L.; Marbán-Flores, R. Telecommunications and Economic Development–The 21st Century: Making the Evidence Stronger. Telecommun. Policy 2020, 44, 101905. [Google Scholar] [CrossRef]
- Kousalya, K.; Mohana, R.S.; Sasipriyaa, N.; Prabha, C.; Udhayakumar, T. 6G with Smart Healthcare, Haptic Communication: An Overall Perspective. In Handbook of Research on Design, Deployment, Automation, and Testing Strategies for 6G Mobile Core Network; IGI Global: Hershey, PA, USA, 2022; pp. 267–283. [Google Scholar]
- Gulati, K.; Boddu, R.S.K.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A Review Paper on Wireless Sensor Network Techniques in Internet of Things (IoT). Mater. Today: Proc. 2022, 51, 161–165. [Google Scholar] [CrossRef]
- Koohang, A.; Sargent, C.S.; Nord, J.H.; Paliszkiewicz, J. Internet of Things (IoT): From Awareness to Continued Use. Int. J. Inf. Manag. 2022, 62, 102442. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A Survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Oğur, N.B.; Al-Hubaishi, M.; Çeken, C. IoT Data Analytics Architecture for Smart Healthcare Using RFID and WSN. ETRI J. 2022, 44, 135–146. [Google Scholar] [CrossRef]
- Antonakoglou, K.; Xu, X.; Steinbach, E.; Mahmoodi, T.; Dohler, M. Toward Haptic Communications over the 5G Tactile Internet. IEEE Commun. Surv. Tutor. 2018, 20, 3034–3059. [Google Scholar] [CrossRef] [Green Version]
- Raisamo, R.; Salminen, K.; Rantala, J.; Farooq, A.; Ziat, M. Interpersonal Haptic Communication: Review and Directions for the Future. Int. J. Hum.-Comput. Stud. 2022, 166, 102881. [Google Scholar] [CrossRef]
- Qiao, Y.; Zheng, Q.; Lin, Y.; Fang, Y.; Xu, Y.; Zhao, T. Haptic Communication: Toward 5G Tactile Internet. In Proceedings of the 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Fuzhou, China, 13–16 December 2020; pp. 1–3. [Google Scholar]
- Ranjha, A.; Kaddoum, G.; Rahim, M.; Dev, K. URLLC in UAV-Enabled Multicasting Systems: A Dual Time and Energy Minimization Problem Using UAV Speed, Altitude and Beamwidth. Comput. Commun. 2022, 187, 125–133. [Google Scholar] [CrossRef]
- Narsani, H.K.; Ranjha, A.; Dev, K.; Memon, F.H.; Qureshi, N.M.F. Leveraging UAV-Assisted Communications to Improve Secrecy for URLLC in 6G Systems. Digit. Commun. Netw. 2022, in press. [Google Scholar] [CrossRef]
- Rao, J.; Vrzic, S. Packet Duplication for URLLC in 5G: Architectural Enhancements and Performance Analysis. IEEE Netw. 2018, 32, 32–40. [Google Scholar] [CrossRef]
- Dai, H.; Wang, Y.; Zhou, T.; Yang, L. Joint Service Improvement and Content Placement for Cache-Enabled Heterogeneous Cellular Networks. IET Signal Process. 2019, 13, 253–261. [Google Scholar] [CrossRef]
- Azari, A.; Ozger, M.; Cavdar, C. Risk-Aware Resource Allocation for URLLC: Challenges and Strategies with Machine Learning. IEEE Commun. Mag. 2019, 57, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Popovski, P.; Stefanović, Č.; Nielsen, J.J.; De Carvalho, E.; Angjelichinoski, M.; Trillingsgaard, K.F.; Bana, A.-S. Wireless Access in Ultra-Reliable Low-Latency Communication (URLLC). IEEE Trans. Commun. 2019, 67, 5783–5801. [Google Scholar] [CrossRef] [Green Version]
- Bhat, J.R.; Alqahtani, S.A. 6G Ecosystem: Current Status and Future Perspective. IEEE Access 2021, 9, 43134–43167. [Google Scholar] [CrossRef]
- Salah, I.; Mabrook, M.M.; Hussein, A.I.; Rahouma, K.H. Comparative Study of Efficiency Enhancement Technologies in 5G Networks-A Survey. Procedia Comput. Sci. 2021, 182, 150–158. [Google Scholar] [CrossRef]
- Slalmi, A.; Chaibi, H.; Chehri, A.; Saadane, R.; Jeon, G.; Hakem, N. On the Ultra-Reliable and Low-Latency Communications for Tactile Internet in 5G Era. Procedia Comput. Sci. 2020, 176, 3853–3862. [Google Scholar] [CrossRef]
- Ateya, A.A.; Muthanna, A.; Makolkina, M.; Koucheryavy, A. Study of 5G Services Standardization: Specifications and Requirements. In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–6. [Google Scholar]
- Park, J.H.; Rathore, S.; Singh, S.K.; Salim, M.M.; Azzaoui, A.E.; Kim, T.W.; Pan, Y.; Park, J.H. A Comprehensive Survey on Core Technologies and Services for 5G Security: Taxonomies, Issues, and Solutions. Hum.-Centric Comput. Inf. Sci 2021, 11. [Google Scholar] [CrossRef]
- Wijethilaka, S.; Liyanage, M. Survey on Network Slicing for Internet of Things Realization in 5G Networks. IEEE Commun. Surv. Tutor. 2021, 23, 957–994. [Google Scholar] [CrossRef]
- Mazied, E.A.; Liu, L.; Midkiff, S.F. Towards Intelligent RAN Slicing for B5G: Opportunities and Challenges. arXiv 2021, arXiv:2103.00227. [Google Scholar]
- Wei, F.; Feng, G.; Sun, Y.; Wang, Y.; Qin, S.; Liang, Y.-C. Network Slice Reconfiguration by Exploiting Deep Reinforcement Learning with Large Action Space. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2197–2211. [Google Scholar] [CrossRef]
- Thiruvasagam, P.K.; Chakraborty, A.; Murthy, C.S.R. Resilient and Latency-Aware Orchestration of Network Slices Using Multi-Connectivity in MEC-Enabled 5G Networks. IEEE Trans. Netw. Serv. Manag. 2021, 18, 2502–2514. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Mucchi, L.; Jayousi, S.; Caputo, S.; Paoletti, E.; Zoppi, P.; Geli, S.; Dioniso, P. How 6G Technology Can Change the Future Wireless Healthcare. In Proceedings of the 2020 2nd 6G wireless summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–6. [Google Scholar]
- Suraci, C.; De Angelis, V.; Lofaro, G.; Giudice, M.L.; Marrara, G.; Rinaldi, F.; Russo, A.; Bevacqua, M.T.; Lax, G.; Mammone, N. The Next Generation of EHealth: A Multidisciplinary Survey. IEEE Access 2022, 10, 134623–134646. [Google Scholar] [CrossRef]
- De Alwis, C.; Pham, Q.-V.; Liyanage, M. 6G Frontiers: Towards Future Wireless Systems; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The Road towards 6G: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjöland, H.; Tufvesson, F. 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proc. IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- Mahmood, M.R.; Matin, M.A. Enabling Technologies for Internet of Everything. In Enabling Technologies for Next Generation Wireless Communications; CRC Press: Boca Raton, FL, USA, 2020; pp. 33–43. [Google Scholar]
- Gavrilovska, L.; Rakovic, V.; Denkovski, D. From Cloud RAN to Open RAN. Wirel. Pers. Commun. 2020, 113, 1523–1539. [Google Scholar] [CrossRef]
- Calvanese Strinati, E.; Barbarossa, S.; Choi, T.; Pietrabissa, A.; Giuseppi, A.; De Santis, E.; Vidal, J.; Becvar, Z.; Haustein, T.; Cassiau, N. 6G in the Sky: On-Demand Intelligence at the Edge of 3D Networks. ETRI J. 2020, 42, 643–657. [Google Scholar] [CrossRef]
- Ali-Yahiya, T.; Monnet, W. The Tactile Internet; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Lacalle, I.; López, C.; Vaño, R.; Palau, C.E.; Esteve, M.; Ganzha, M.; Paprzycki, M.; Szmeja, P. Tactile Internet in Internet of Things Ecosystems. In International Conference on Electrical and Electronics Engineering; Springer: Berlin/Heidelberg, Germany, 2022; pp. 794–807. [Google Scholar]
- Promwongsa, N.; Ebrahimzadeh, A.; Naboulsi, D.; Kianpisheh, S.; Belqasmi, F.; Glitho, R.; Crespi, N.; Alfandi, O. A Comprehensive Survey of the Tactile Internet: State-of-the-Art and Research Directions. IEEE Commun. Surv. Tutor. 2020, 23, 472–523. [Google Scholar] [CrossRef]
- Fettweis, G.P.; Boche, H. 6G: The Personal Tactile Internet—And Open Questions for Information Theory. IEEE BITS Inf. Theory Mag. 2021, 1, 71–82. [Google Scholar] [CrossRef]
- Padhi, P.K.; Charrua-Santos, F. 6G Enabled Tactile Internet and Cognitive Internet of Healthcare Everything: Towards a Theoretical Framework. Appl. Syst. Innov. 2021, 4, 66. [Google Scholar] [CrossRef]
- Gupta, R.; Tanwar, S.; Tyagi, S.; Kumar, N. Tactile Internet and Its Applications in 5G Era: A Comprehensive Review. Int. J. Commun. Syst. 2019, 32, e3981. [Google Scholar] [CrossRef]
- Aijaz, A.; Sooriyabandara, M. The Tactile Internet for Industries: A Review. Proc. IEEE 2018, 107, 414–435. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. Smart Manufacturing and Tactile Internet Based on 5G in Industry 4.0: Challenges, Applications and New Trends. Electronics 2021, 10, 3175. [Google Scholar] [CrossRef]
- Zubair Islam, M.; Ali, R.; Haider, A.; Kim, H.S. Reinforcement Learning-Aided Edge Intelligence Framework for Delay-Sensitive Industrial Applications. Sensors 2022, 22, 8001. [Google Scholar] [CrossRef]
- Ivanova, E.; Eden, J.; Zhu, S.; Carboni, G.; Yurkewich, A.; Burdet, E. Short Time Delay Does Not Hinder Haptic Communication Benefits. IEEE Trans. Haptics 2021, 14, 322–327. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, D.K.; Chae, C.-B.; Choi, S.; Ko, Y.-C.; Kim, J.; Lim, Y.-G.; Yang, M.; Kim, S.; Lim, B. Ultrareliable and Low-Latency Communication Techniques for Tactile Internet Services. Proc. IEEE 2018, 107, 376–393. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.; Andersson, L.A.; Araújo, J.; Curescu, C.; Lundsjö, J.; Rune, G.; Steinbach, E.; Wikström, G. Adaptive 5G Low-Latency Communication for Tactile Internet Services. Proc. IEEE 2018, 107, 325–349. [Google Scholar] [CrossRef]
- Fanibhare, V.; Sarkar, N.I.; Al-Anbuky, A. A Survey of the Tactile Internet: Design Issues and Challenges, Applications, and Future Directions. Electronics 2021, 10, 2171. [Google Scholar] [CrossRef]
- Banafaa, M.; Shayea, I.; Din, J.; Azmi, M.H.; Alashbi, A.; Daradkeh, Y.I.; Alhammadi, A. 6G Mobile Communication Technology: Requirements, Targets, Applications, Challenges, Advantages, and Opportunities. Alex. Eng. J. 2022, 64, 245–274. [Google Scholar] [CrossRef]
- Jameel, F.; Hamid, Z.; Jabeen, F.; Zeadally, S.; Javed, M.A. A Survey of Device-to-Device Communications: Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 2133–2168. [Google Scholar] [CrossRef]
- She, C.; Yang, C.; Quek, T.Q. Joint Uplink and Downlink Resource Configuration for Ultra-Reliable and Low-Latency Communications. IEEE Trans. Commun. 2018, 66, 2266–2280. [Google Scholar] [CrossRef] [Green Version]
- Amodu, O.A.; Othman, M.; Noordin, N.K.; Ahmad, I. A Primer on Design Aspects, Recent Advances, and Challenges in Cellular Device-to-Device Communication. Ad Hoc Networks 2019, 94, 101938. [Google Scholar] [CrossRef]
- Asif, M.; Ihsan, A.; Khan, W.U.; Ranjha, A.; Zhang, S.; Wu, S.X. Energy-Efficient Backscatter-Assisted Coded Cooperative-NOMA for B5G Wireless Communications. IEEE Trans. Green Commun. Netw. 2022, 7, 70–83. [Google Scholar] [CrossRef]
- Yastrebova, A.; Kirichek, R.; Koucheryavy, Y.; Borodin, A.; Koucheryavy, A. Future Networks 2030: Architecture & Requirements. In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–8. [Google Scholar]
- Long, Q.; Chen, Y.; Zhang, H.; Lei, X. Software Defined 5G and 6G Networks: A Survey. Mob. Netw. Appl. 2019, 27, 1792–1812. [Google Scholar] [CrossRef]
- Aijaz, A. Towards 5G-Enabled Tactile Internet: Radio Resource Allocation for Haptic Communications. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Doha, Qatar, 3–6 April 2016; pp. 145–150. [Google Scholar]
- Aijaz, A. A Radio Resource Slicing Framework for 5G Networks With Haptic Communications. IEEE Syst. J. 2017, 12, 2285–2296. [Google Scholar] [CrossRef]
- Aijaz, A. Toward Human-in-the-Loop Mobile Networks: A Radio Resource Allocation Perspective on Haptic Communications. IEEE Trans. Wirel. Commun. 2018, 17, 4493–4508. [Google Scholar] [CrossRef]
- Rost, P.; Mannweiler, C.; Michalopoulos, D.S.; Sartori, C.; Sciancalepore, V.; Sastry, N.; Holland, O.; Tayade, S.; Han, B.; Bega, D. Network Slicing to Enable Scalability and Flexibility in 5G Mobile Networks. IEEE Commun. Mag. 2017, 55, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N.; Asaduzzaman, M. Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future. IEEE Access 2019, 7, 46317–46350. [Google Scholar] [CrossRef]
- Xing, Y.; Rappaport, T.S. Propagation Measurement System and Approach at 140 GHz-Moving to 6G and above 100 GHz. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Na, W.; Dao, N.-N.; Kim, J.; Ryu, E.-S.; Cho, S. Simulation and Measurement: Feasibility Study of Tactile Internet Applications for MmWave Virtual Reality. ETRI J. 2020, 42, 163–174. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, P.; Fortino, G. Emotion Communication System. IEEE Access 2016, 5, 326–337. [Google Scholar] [CrossRef]
- Vega, M.T.; Mehmli, T.; van der Hooft, J.; Wauters, T.; De Turck, F. Enabling Virtual Reality for the Tactile Internet: Hurdles and Opportunities. In Proceedings of the 2018 14th International Conference on Network and Service Management (CNSM), Rome, Italy, 5–9 November 2018; pp. 378–383. [Google Scholar]
- Wang, D.; Li, T.; Afzal, N.; Zhang, J.; Zhang, Y. Haptics-Mediated Approaches for Enhancing Sustained Attention: Framework and Challenges. Sci. China Inf. Sci. 2019, 62, 211101. [Google Scholar] [CrossRef] [Green Version]
- Kantola, R. 6g Network Needs to Support Embedded Trust. In Proceedings of the 14th International Conference on Availability, Reliability and Security, Canterbury, UK, 26–29 August 2019; pp. 1–5. [Google Scholar]
- Ateya, A.A.; Vybornova, A.; Samouylov, K.; Koucheryavy, A. System Model for Multi-Level Cloud Based Tactile Internet System. In Wired/Wireless Internet Communication; Springer: Berlin/Heidelberg, Germany, 2017; pp. 77–86. [Google Scholar]
- Al-Eryani, Y.; Hossain, E. Delta-OMA (D-OMA): A New Method for Massive Multiple Access in 6G. arXiv 2019, arXiv:1901.07100. [Google Scholar]
- Braun, P.J.; Pandi, S.; Schmoll, R.-S.; Fitzek, F.H. On the Study and Deployment of Mobile Edge Cloud for Tactile Internet Using a 5G Gaming Application. In Proceedings of the 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 154–159. [Google Scholar]
- Dohler, M.; Mahmoodi, T.; Lema, M.A.; Condoluci, M.; Sardis, F.; Antonakoglou, K.; Aghvami, H. Internet of Skills, Where Robotics Meets AI, 5G and the Tactile Internet. In Proceedings of the 2017 European Conference on Networks and Communications (EuCNC), Oulu, Finland, 12–15 June 2017; pp. 1–5. [Google Scholar]
- Fadhil, H.M.; Dawood, Z.O. Evolutionary Perspective of Mobile Communication Technologies. In Proceedings of the 2018 International Conference on Computer and Applications (ICCA), Beirut, Lebanon, 25–26 August 2018; pp. 80–84. [Google Scholar]
- Yu, P.; Fischione, C.; Dimarogonas, D.V. Distributed Event-Triggered Communication and Control of Linear Multiagent Systems under Tactile Communication. IEEE Trans. Autom. Control 2018, 63, 3979–3985. [Google Scholar] [CrossRef]
- Aijaz, A.; Dohler, M.; Aghvami, A.H.; Friderikos, V.; Frodigh, M. Realizing the Tactile Internet: Haptic Communications over next Generation 5G Cellular Networks. IEEE Wirel. Commun. 2016, 24, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Ateya, A.A.; Vybornova, A.; Kirichek, R.; Koucheryavy, A. Multilevel Cloud Based Tactile Internet System. In Proceedings of the 2017 19th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 19–22 February 2017; pp. 105–110. [Google Scholar]
- Ateya, A.A.; Muthanna, A.; Gudkova, I.; Vybornova, A.; Koucheryavy, A. Intelligent Core Network for Tactile Internet System. In Proceedings of the International Conference on Future Networks and Distributed Systems, New York, NY, USA, 19–20 July 2017; pp. 1–6. [Google Scholar]
- Banchs, A.; Breitbach, M.; Costa, X.; Doetsch, U.; Redana, S.; Sartori, C.; Schotten, H. A Novel Radio Multiservice Adaptive Network Architecture for 5G Networks. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5. [Google Scholar]
- Bojkovic, Z.S.; Bakmaz, B.M.; Bakmaz, M.R. Vision and Enabling Technologies of Tactile Internet Realization. In Proceedings of the 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS), Nis, Serbia, 18–20 October 2017; pp. 113–118. [Google Scholar]
- Ateya, A.A.; Muthanna, A.; Gudkova, I.; Abuarqoub, A.; Vybornova, A.; Koucheryavy, A. Development of Intelligent Core Network for Tactile Internet and Future Smart Systems. J. Sens. Actuator Netw. 2018, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, D.; Glans, R.; De Koning, D.; Kuipers, F.A.; Lugtenburg, J.; Polachan, K.; Venkata, P.T.; Singh, C.; Turkovic, B.; Van Wijk, B. Challenges in Haptic Communications over the Tactile Internet. IEEE Access 2017, 5, 23502–23518. [Google Scholar] [CrossRef]
- Gholipoor, N.; Parsaeefard, S.; Javan, M.R.; Mokari, N.; Saeedi, H.; Pishro-Nik, H. Cloud-Based Queuing Model for Tactile Internet in next Generation of RAN. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Gholipoor, N.; Parsaeefard, S.; Javan, M.R.; Mokari, N.; Saeedi, H.; Pishro-Nik, H. Resource Management and Admission Control for Tactile Internet in Next Generation of Radio Access Network. IEEE Access 2020, 8, 136261–136277. [Google Scholar] [CrossRef]
- Azmandian, M.; Hancock, M.; Benko, H.; Ofek, E.; Wilson, A.D. Haptic Retargeting: Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experiences. In Proceedings of the 2016 Chi Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 1968–1979. [Google Scholar]
- Amirkhani, S.; Bahadorian, B.; Nahvi, A.; Chaibakhsh, A. Stable Haptic Rendering in Interactive Virtual Control Laboratory. Intell. Serv. Robot. 2018, 11, 289–300. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Dao, N.-N.; Pham, Q.-V.; Tu, N.H.; Thanh, T.T.; Bao, V.N.Q.; Lakew, D.S.; Cho, S. Survey on Aerial Radio Access Networks: Toward a Comprehensive 6G Access Infrastructure. IEEE Commun. Surv. Tutor. 2021, 23, 1193–1225. [Google Scholar] [CrossRef]
- Guo, H.; Li, J.; Liu, J.; Tian, N.; Kato, N. A Survey on Space-Air-Ground-Sea Integrated Network Security in 6G. IEEE Commun. Surv. Tutor. 2021, 24, 53–87. [Google Scholar] [CrossRef]
- Tang, F.; Chen, X.; Zhao, M.; Kato, N. The Roadmap of Communication and Networking in 6G for the Metaverse. IEEE Wirel. Commun. 2022, 1–15. [Google Scholar] [CrossRef]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.-S. What Should 6G Be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible Light Communication in 6G: Advances, Challenges, and Prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Zhai, W.; Sun, S.; Niyato, D.; Lam, K.-Y. A Survey of 6G Wireless Communications: Emerging Technologies. In Future of Information and Communication Conference; Springer: Berlin/Heidelberg, Germany, 2021; pp. 150–170. [Google Scholar]
- Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G Wireless Communications: Vision and Potential Techniques. IEEE Netw. 2019, 33, 70–75. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, W.; Zhao, J.; Zhang, T.; Sun, S.; Niyato, D.; Lam, K.-Y. A Comprehensive Survey of 6g Wireless Communications. arXiv 2020, arXiv:2101.03889. [Google Scholar]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Di Renzo, M.; Debbah, M. Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Yan, S.; Cao, X.; Liu, Z.; Liu, X. Interference Management in 6G Space and Terrestrial Integrated Networks: Challenges and Approaches. Intell. Converg. Netw. 2020, 1, 271–280. [Google Scholar] [CrossRef]
- Elmeadawy, S.; Shubair, R.M. 6G Wireless Communications: Future Technologies and Research Challenges. In Proceedings of the 2019 international conference on electrical and computing technologies and applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 19–21 November 2019; pp. 1–5. [Google Scholar]
- Wang, Z.; Du, Y.; Wei, K.; Han, K.; Xu, X.; Wei, G.; Tong, W.; Zhu, P.; Ma, J.; Wang, J. Vision, Application Scenarios, and Key Technology Trends for 6G Mobile Communications. Sci. China Inf. Sci. 2022, 65, 151301. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Y.; Zong, B.; Parolari, S. Potential Key Technologies for 6G Mobile Communications. Sci. China Inf. Sci. 2020, 63, 183301. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Y.-C.; Niyato, D. 6G Visions: Mobile Ultra-Broadband, Super Internet-of-Things, and Artificial Intelligence. China Commun. 2019, 16, 1–14. [Google Scholar] [CrossRef]
- Xiao, Z.; Han, Z.; Nallanathan, A.; Dobre, O.A.; Clerckx, B.; Choi, J.; He, C.; Tong, W. Antenna Array Enabled Space/Air/Ground Communications and Networking for 6G. IEEE J. Sel. Areas Commun. 2022, 40, 2773–2804. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Z.; Xu, X.; Ni, F.; Zhang, H. The Collective Advantage for Advancing Communications and Intelligence. IEEE Wirel. Commun. 2020, 27, 96–102. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, J.A.; Liu, R.P.; Guo, Y.J.; Hanzo, L. Airplane-Aided Integrated Networking for 6G Wireless: Will It Work? IEEE Veh. Technol. Mag. 2019, 14, 84–91. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A Comprehensive Survey. IEEE Internet Things J. 2021, 9, 359–383. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, J.; Geng, Y.; Xiao, Z.; Sun, T.; Zhang, N.; Liu, J.; Wu, Q.; Cao, X. Space-Air-Ground Integrated Network (SAGIN) for 6G: Requirements, Architecture and Challenges. China Commun. 2022, 19, 90–108. [Google Scholar] [CrossRef]
- Higuchi, A.; Takeshita, E.; Hisano, D.; Inoue, Y.; Maruta, K.; Nishio, T.; Hara-Azumi, Y.; Nakayama, Y. Aquatic Fronthaul for Underwater-Ground Communication in 6G Mobile Communications. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), Helsinki, Finland, 25 August 2022; pp. 1–6. [Google Scholar]
- Mohsan, S.A.H.; Khan, M.A.; Mazinani, A.; Alsharif, M.H.; Cho, H.-S. Enabling Underwater Wireless Power Transfer towards Sixth Generation (6G) Wireless Networks: Opportunities, Recent Advances, and Technical Challenges. J. Mar. Sci. Eng. 2022, 10, 1282. [Google Scholar] [CrossRef]
- Bera, S.; Das, H.; Nayak, S.; Patgiri, R. Future Tactile Internet: Issues, Challenges and Applications. In Proceedings of the 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 7–9 October 2021; pp. 625–630. [Google Scholar]
- Soldani, D.; Fadini, F.; Rasanen, H.; Duran, J.; Niemela, T.; Chandramouli, D.; Hoglund, T.; Doppler, K.; Himanen, T.; Laiho, J. 5G Mobile Systems for Healthcare. In Proceedings of the 2017 IEEE 85th vehicular technology conference (VTC Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar]
- Brito, J.M.C. Trends in Wireless Communications towards 5G Networks—The Influence of e-Health and IoT Applications. In Proceedings of the 2016 International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia, 13–15 July 2016; pp. 1–7. [Google Scholar]
- Feng, L.; Ali, A.; Iqbal, M.; Bashir, A.K.; Hussain, S.A.; Pack, S. Optimal Haptic Communications over Nanonetworks for E-Health Systems. IEEE Trans. Ind. Inform. 2019, 15, 3016–3027. [Google Scholar] [CrossRef] [Green Version]
- Lema, M.A.; Antonakoglou, K.; Sardis, F.; Sornkarn, N.; Condoluci, M.; Mahmoodi, T.; Dohler, M. 5G Case Study of Internet of Skills: Slicing the Human Senses. In Proceedings of the 2017 European Conference on Networks and Communications (EuCNC), Oulu, Finland, 12–15 June 2017; pp. 1–6. [Google Scholar]
- Miao, Y.; Jiang, Y.; Peng, L.; Hossain, M.S.; Muhammad, G. Telesurgery Robot Based on 5G Tactile Internet. Mob. Netw. Appl. 2018, 23, 1645–1654. [Google Scholar] [CrossRef]
- Meryem, S.; Adnan, A.; Mischa, D. The 5G-Enabled Tactile Internet: Applications, Requirements, and Architecture. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Doha, Qatar, 3–6 April 2016; pp. 1–6. [Google Scholar]
- Katz, M.; Pirinen, P.; Posti, H. Towards 6G: Getting Ready for the next Decade. In Proceedings of the 2019 16th international symposium on wireless communication systems (ISWCS), Oulu, Finland, 27–30 August 2019; pp. 714–718. [Google Scholar]
- Bermejo, C.; Hui, P. A Survey on Haptic Technologies for Mobile Augmented Reality. arXiv 2017, arXiv:1709.00698. [Google Scholar] [CrossRef]
- Condoluci, M.; Mahmoodi, T.; Steinbach, E.; Dohler, M. Soft Resource Reservation for Low-Delayed Teleoperation over Mobile Networks. IEEE Access 2017, 5, 10445–10455. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Liu, Q.; Steinbach, E. Toward QoE-Driven Dynamic Control Scheme Switching for Time-Delayed Teleoperation Systems: A Dedicated Case Study. In Proceedings of the 2017 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE), Abu Dhabi, United Arab Emirates, 22–23 October 2017; pp. 1–6. [Google Scholar]
- Dressler, F.; Klingler, F.; Segata, M.; Cigno, R.L. Cooperative Driving and the Tactile Internet. Proc. IEEE 2018, 107, 436–446. [Google Scholar] [CrossRef]
- Tanwar, S.; Tyagi, S.; Budhiraja, I.; Kumar, N. Tactile Internet for Autonomous Vehicles: Latency and Reliability Analysis. IEEE Wirel. Commun. 2019, 26, 66–72. [Google Scholar] [CrossRef]
- Anthes, C.; García-Hernández, R.J.; Wiedemann, M.; Kranzlmüller, D. State of the Art of Virtual Reality Technology. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–19. [Google Scholar]
- Devagiri, J.S.; Paheding, S.; Niyaz, Q.; Yang, X.; Smith, S. Augmented Reality and Artificial Intelligence in Industry: Trends, Tools, and Future Challenges. Expert Syst. Appl. 2022, 207, 118002. [Google Scholar] [CrossRef]
- Kosa, M.; Uysal, A.; Eren, P.E. Acceptance of Virtual Reality Games: A Multi-Theory Approach. In Research Anthology on Game Design, Development, Usage, and Social Impact; IGI Global: Hershey, PA, USA, 2023; pp. 31–61. [Google Scholar]
- Popović, N. Tactile Internet in Future Industrial Automation Applications. In Proceedings of the 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 16–18 March 2022; pp. 1–6. [Google Scholar]
- Coutinho, R.W.; Boukerche, A. Design of Edge Computing for 5G-Enabled Tactile Internet-Based Industrial Applications. IEEE Commun. Mag. 2022, 60, 60–66. [Google Scholar] [CrossRef]
- Wu, Y.; Yue, C.; Yang, Y.; Ao, L. Resource Allocation for D2D-Assisted Haptic Communications. Digit. Commun. Netw. 2022, in press. [Google Scholar] [CrossRef]
- ArunKumar, S.; Sivakami, K.; VijayaKarthik, S.V.; Deepa, S.M. 6G with Smart Healthcare, Haptic Communication. In Handbook of Research on Design, Deployment, Automation, and Testing Strategies for 6G Mobile Core Network; IGI Global: Hershey, PA, USA, 2022; pp. 303–329. [Google Scholar]
- Dixit, S.; Bhatia, V.; Khanganba, S.P.; Agrawal, A. Future Challenges. In 6G: Sustainable Development for Rural and Remote Communities; Springer: Berlin/Heidelberg, Germany, 2022; pp. 81–104. [Google Scholar]
- Ikram, M.; Sultan, K.; Lateef, M.F.; Alqadami, A.S. A Road towards 6G Communication—A Review of 5G Antennas, Arrays, and Wearable Devices. Electronics 2022, 11, 169. [Google Scholar] [CrossRef]
- Azari, M.M.; Solanki, S.; Chatzinotas, S.; Kodheli, O.; Sallouha, H.; Colpaert, A.; Montoya, J.F.M.; Pollin, S.; Haqiqatnejad, A.; Mostaani, A. Evolution of Non-Terrestrial Networks from 5G to 6G: A Survey. IEEE Commun. Surv. Tutor. 2022, 24, 2633–2672. [Google Scholar] [CrossRef]
- Jun, S.; Kang, Y.; Kim, J.; Kim, C. Ultra-Low-Latency Services in 5G Systems: A Perspective from 3GPP Standards. ETRI J. 2020, 42, 721–733. [Google Scholar] [CrossRef]
- Ghosh, A.; Maeder, A.; Baker, M.; Chandramouli, D. 5G Evolution: A View on 5G Cellular Technology beyond 3GPP Release 15. IEEE Access 2019, 7, 127639–127651. [Google Scholar] [CrossRef]
- Peisa, J.; Persson, P.; Parkvall, S.; Dahlman, E.; Grøvlen, A.; Hoymann, C.; Gerstenberger, D. 5G Evolution: 3GPP Releases 16 & 17 Overview. Ericsson Technol. Rev. 2020, 2020, 2–13. [Google Scholar]
- Baek, S.; Kim, D.; Tesanovic, M.; Agiwal, A. 3GPP New Radio Release 16: Evolution of 5G for Industrial Internet of Things. IEEE Commun. Mag. 2021, 59, 41–47. [Google Scholar] [CrossRef]
- Le, T.-K.; Salim, U.; Kaltenberger, F. An Overview of Physical Layer Design for Ultra-Reliable Low-Latency Communications in 3GPP Releases 15, 16, and 17. IEEE Access 2020, 9, 433–444. [Google Scholar] [CrossRef]
- Sharma, S.K.; Wang, X. Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions. IEEE Commun. Surv. Tutor. 2019, 22, 426–471. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, N.H.; Alves, H.; López, O.A.; Shehab, M.; Osorio, D.P.M.; Latva-Aho, M. Six Key Features of Machine Type Communication in 6G. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar]
- Abdelsadek, M.Y.M. Optimized Resource Allocation Techniques for Critical Machine-Type Communications in Mixed LTE Networks. Ph.D. Thesis, Memorial University of Newfoundland, Norris Point, NL, Canada, 2020. [Google Scholar]
- Mirkovic, D.; Armitage, G.; Branch, P. A Survey of Round Trip Time Prediction Systems. IEEE Commun. Surv. Tutor. 2018, 20, 1758–1776. [Google Scholar] [CrossRef]
- Lema, M.A.; Laya, A.; Mahmoodi, T.; Cuevas, M.; Sachs, J.; Markendahl, J.; Dohler, M. Business Case and Technology Analysis for 5G Low Latency Applications. IEEE Access 2017, 5, 5917–5935. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Qian, F.; Gerber, A.; Mao, Z.M.; Sen, S.; Spatscheck, O. A Close Examination of Performance and Power Characteristics of 4G LTE Networks. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, Windermere, UK, 25–29 June 2012; pp. 225–238. [Google Scholar]
- Hou, Z.; She, C.; Li, Y.; Niyato, D.; Dohler, M.; Vucetic, B. Intelligent Communications for Tactile Internet in 6G: Requirements, Technologies, and Challenges. IEEE Commun. Mag. 2021, 59, 82–88. [Google Scholar] [CrossRef]
- Shahraki, A.; Abbasi, M.; Piran, M.; Taherkordi, A. A Comprehensive Survey on 6G Networks: Applications, Core Services, Enabling Technologies, and Future Challenges. arXiv 2021, arXiv:2101.12475. [Google Scholar]
- Lu, Y.; Zheng, X. 6G: A Survey on Technologies, Scenarios, Challenges, and the Related Issues. J. Ind. Inf. Integr. 2020, 19, 100158. [Google Scholar] [CrossRef]
- Gustavsson, U.; Frenger, P.; Fager, C.; Eriksson, T.; Zirath, H.; Dielacher, F.; Studer, C.; Pärssinen, A.; Correia, R.; Matos, J.N. Implementation Challenges and Opportunities in Beyond-5G and 6G Communication. IEEE J. Microw. 2021, 1, 86–100. [Google Scholar] [CrossRef]
- Geraci, G.; Garcia-Rodriguez, A.; Azari, M.M.; Lozano, A.; Mezzavilla, M.; Chatzinotas, S.; Chen, Y.; Rangan, S.; Di Renzo, M. What Will the Future of UAV Cellular Communications Be? A Flight from 5G to 6G. IEEE Commun. Surv. Tutor. 2022, 24, 1304–1335. [Google Scholar] [CrossRef]
- Clazzer, F.; Munari, A.; Liva, G.; Lazaro, F.; Stefanovic, C.; Popovski, P. From 5G to 6G: Has the Time for Modern Random Access Come? arXiv 2019, arXiv:1903.03063. [Google Scholar]
- Petrov, I.; Janevski, T. Advanced 5G-TCP: Transport Protocol for 5G Mobile Networks. In Proceedings of the 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 103–107. [Google Scholar]
- Ezenwigbo, A.; Paranthaman, V.V.; Trestian, R.; Mapp, G.; Sardis, F. Exploring a New Transport Protocol for Vehicular Networks. In Proceedings of the 2018 Fifth International Conference on Internet of Things: Systems, Management and Security, Valencia, Spain, 15–18 October 2018; pp. 287–294. [Google Scholar]
- Budhiraja, I.; Tyagi, S.; Tanwar, S.; Kumar, N.; Rodrigues, J.J. Tactile Internet for Smart Communities in 5G: An Insight for NOMA-Based Solutions. IEEE Trans. Ind. Inform. 2019, 15, 3104–3112. [Google Scholar] [CrossRef]
- Achilli, G.M.; Logozzo, S.; Valigi, M.C. An Educational Test Rig for Kinesthetic Learning of Mechanisms for Underactuated Robotic Hands. Robotics 2022, 11, 115. [Google Scholar] [CrossRef]
- Hamza-Lup, F. Kinesthetic Learning–Haptic User Interfaces for Gyroscopic Precession Simulation. arXiv 2019, arXiv:1908.09082. [Google Scholar]
- Zeng, C.; Zhao, T.; Liu, Q.; Xu, Y.; Wang, K. Perception-Lossless Codec of Haptic Data with Low Delay. In Proceedings of the Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 3642–3650. [Google Scholar]
- Tan, H.Z.; Choi, S.; Lau, F.W.; Abnousi, F. Methodology for Maximizing Information Transmission of Haptic Devices: A Survey. Proc. IEEE 2020, 108, 945–965. [Google Scholar] [CrossRef]
- Dangxiao, W.; Yuan, G.U.O.; Shiyi, L.I.U.; Zhang, Y.; Weiliang, X.; Jing, X. Haptic Display for Virtual Reality: Progress and Challenges. Virtual Real. Intell. Hardw. 2019, 1, 136–162. [Google Scholar]
- Wee, C.; Yap, K.M.; Lim, W.N. Haptic Interfaces for Virtual Reality: Challenges and Research Directions. IEEE Access 2021, 9, 112145–112162. [Google Scholar] [CrossRef]
- Yin, J.; Hinchet, R.; Shea, H.; Majidi, C. Wearable Soft Technologies for Haptic Sensing and Feedback. Adv. Funct. Mater. 2021, 31, 2007428. [Google Scholar] [CrossRef]
- Bai, H.; Li, S.; Shepherd, R.F. Elastomeric Haptic Devices for Virtual and Augmented Reality. Adv. Funct. Mater. 2021, 31, 2009364. [Google Scholar] [CrossRef]
- Choi, D.-S.; Lee, S.-H.; Kim, S.-Y. Transparent and Soft Haptic Actuator for Interaction with Flexible/Deformable Devices. IEEE Access 2020, 8, 170853–170861. [Google Scholar] [CrossRef]
- Cheok, A.D. An Instrument for Remote Kissing and Engineering Measurement of Its Communication Effects Including Modified Turing Test. IEEE Open J. Comput. Soc. 2020, 1, 107–120. [Google Scholar] [CrossRef]
- Wei, X.; Duan, Q.; Zhou, L. A QoE-Driven Tactile Internet Architecture for Smart City. IEEE Netw. 2019, 34, 130–136. [Google Scholar] [CrossRef]
- Sharma, S.K.; Woungang, I.; Anpalagan, A.; Chatzinotas, S. Toward Tactile Internet in beyond 5G Era: Recent Advances, Current Issues, and Future Directions. IEEE Access 2020, 8, 56948–56991. [Google Scholar] [CrossRef]
- Steinbach, E.; Strese, M.; Eid, M.; Liu, X.; Bhardwaj, A.; Liu, Q.; Al-Ja’afreh, M.; Mahmoodi, T.; Hassen, R.; El Saddik, A. Haptic Codecs for the Tactile Internet. Proc. IEEE 2018, 107, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Shi, Y.; Zhou, L. Haptic Signal Reconstruction for Cross-Modal Communications. IEEE Trans. Multimed. 2021, 24, 4514–4525. [Google Scholar] [CrossRef]
- Eid, M.; Cha, J.; El Saddik, A. Admux: An Adaptive Multiplexer for Haptic–Audio–Visual Data Communication. IEEE Trans. Instrum. Meas. 2010, 60, 21–31. [Google Scholar] [CrossRef]
Generation | 1G | 2G | 3G | 4G | 5G | 6G |
---|---|---|---|---|---|---|
Technology | Analog cellular | Digital cellular | Broadband/IP, FDD, TDD | Broadband/IP, Wi-Fi, MIMO | www, IPv6 | 5G + Satellite |
Data Speed | 2.4 Kbps | 9.6 Kbps | 2 Mbps | 50 Mbps | >1 Gbps | 1 Tbps |
Latency Rate | - | - | - | 100 ms | 10 ms | 1 ms |
Round Trip Time (RTT) | - | - | 63.5 ms | 53.1 ms | 10–20 ms | 1 ms |
Core Network | PSTN | PSTN | Packet Network | Internet | Internet | Internet |
Service | Only voice or message | Voice data & SMS | High-speed data, voice, video | Dynamic information access | Interactive multimedia, VoIP, AR, VR, IoT, Partially haptic communications | Interactive multimedia, VoIP, AR, VR IoT, haptic communications |
Hand-off | Horizontal | Horizontal | Horizontal | Vertical | Horizontal & vertical | Horizontal & vertical |
Bandwidth | - | - | - | - | mmWave and Terahertz bands | Terahertz and Optical bands |
Network Slicing | - | - | - | - | Supported | Enhanced support |
Energy Efficiency | - | - | - | - | Improved energy efficiency | Ultra-low power consumption |
Spectral Efficiency | - | - | - | - | Improved spectral efficiency | Extreme spectral efficiency |
Connectivity Density | - | - | - | - | Up to 1 million devices per square kilometer | Up to 10 million devices per square kilometer |
Intelligent Connectivity | - | - | - | - | AI-enabled connectivity | Cognitive and self-learning capabilities |
Security | - | 2G encryption algorithms | Enhanced encryption | Enhanced encryption | Enhanced security mechanisms | Quantum-resistant encryption |
User Experience | - | - | Basic internet browsing | Rich media experiences | Immersive AR/VR, Holography | Holographic and multisensory experiences |
Applications | Voice calls, SMS | Basic data services | Mobile internet, video calls, multimedia streaming | Advanced mobile applications | Ultra-reliable low-latency applications | AI-powered applications, autonomous systems |
Network Architecture | Cellular | Cellular | Cellular | Cellular | Cellular and satellite | Integrated cellular and satellite networks |
Ref. | Methodology | Round-Trip Latency | Energy Efficiency | Security |
---|---|---|---|---|
[74] | ETCC of MAS | ✓ | ✗ | ✗ |
[75] | Adopt optical transport for backhaul medium and increasing computational power of nodes | ✓ | ✗ | ✗ |
[76] | Computation on multi-level clouds | ✓ | ✗ | ✗ |
[77] | Increase in bandwidth or by shifting the computations from the core network controller to the mini-cloud unit | ✓ | ✓ | ✗ |
[69] | Computation on multi-level clouds | ✓ | ✓ | ✓ |
[78] | Computation on network cloud | ✓ | ✗ | ✗ |
[81] | Multi-level mobile edge computing | ✓ | ✗ | ✗ |
[82] | Adjustment of queuing delays in between TI users using SCA and DC | ✗ | ✓ | ✗ |
[83] | Resource allocation (RA) using admission control (AC) for TI users in C-RAN network | ✓ | ✗ | ✗ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awais, M.; Ullah Khan, F.; Zafar, M.; Mudassar, M.; Zaigham Zaheer, M.; Mehmood Cheema, K.; Kamran, M.; Jung, W.-S. Towards Enabling Haptic Communications over 6G: Issues and Challenges. Electronics 2023, 12, 2955. https://doi.org/10.3390/electronics12132955
Awais M, Ullah Khan F, Zafar M, Mudassar M, Zaigham Zaheer M, Mehmood Cheema K, Kamran M, Jung W-S. Towards Enabling Haptic Communications over 6G: Issues and Challenges. Electronics. 2023; 12(13):2955. https://doi.org/10.3390/electronics12132955
Chicago/Turabian StyleAwais, Muhammad, Fasih Ullah Khan, Muhammad Zafar, Muhammad Mudassar, Muhammad Zaigham Zaheer, Khalid Mehmood Cheema, Muhammad Kamran, and Woo-Sung Jung. 2023. "Towards Enabling Haptic Communications over 6G: Issues and Challenges" Electronics 12, no. 13: 2955. https://doi.org/10.3390/electronics12132955
APA StyleAwais, M., Ullah Khan, F., Zafar, M., Mudassar, M., Zaigham Zaheer, M., Mehmood Cheema, K., Kamran, M., & Jung, W.-S. (2023). Towards Enabling Haptic Communications over 6G: Issues and Challenges. Electronics, 12(13), 2955. https://doi.org/10.3390/electronics12132955