The Impact of 6G-IoT Technologies on the Development of Agriculture 5.0: A Review
Abstract
:1. Introduction
2. Agriculture 5.0: Revolutionizing Agriculture with Cutting-Edge Technologies
2.1. Evolution of Agriculture: From Traditional Farming to Agriculture 5.0
2.2. The Ultra-High Requirements of Agriculture 5.0
2.2.1. High-Density and Ultra-High Precision Sensing at the Plant Level
2.2.2. Large-Scale Deployment, Sustainability, and Accountability
3. 6G-IoT: New Technologies and Emerging Services
3.1. Edge Computing and Pervasive Artificial Intelligence
3.2. Blockchain and Artificial Intelligence
3.3. Four-Dimensional Communication
3.4. Quantum Sensing, Communication, and Computation
3.5. Terahertz Communications
3.6. Reconfigurable Intelligent Surfaces
3.7. Digital Twin Technology
3.8. Sustainable End-to-End Network Architecture: The Role of Green Technologies
3.9. Anticipated Advancements in 6G Services: umMTC and eRLLC
4. The Future of Farming: 6G-IoT Applications in Agriculture 5.0
4.1. Enhancing Sensing Accuracy and Reliability
4.2. Transforming Farming with Collaborative Robotic Systems
4.3. Enabling Precision Agriculture in Extremely Remote Locations
4.4. More Accurate and Reliable AI-Based Applications
4.5. Enhanced Remote Disease Assessment and Augmented Reality
4.6. Enabling Secure and Transparent Transactions
4.7. Sustainable Infrastructure and Systems
5. Conclusions: Meeting the Challenges of the Future with 6G-IoT
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A comprehensive survey. IEEE Internet Things J. 2021, 9, 359–383. [Google Scholar] [CrossRef]
- Cirillo, F.; Gómez, D.; Diez, L.; Maestro, I.E.; Gilbert, T.B.J.; Akhavan, R. Smart city IoT services creation through large-scale collaboration. IEEE Internet Things J. 2020, 7, 5267–5275. [Google Scholar] [CrossRef] [Green Version]
- Dincer, N.G.; Akkuş, Ö. A new fuzzy time series model based on robust clustering for forecasting of air pollution. Ecol. Informatics 2018, 43, 157–164. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, H.; Shi, H. Human activity recognition based on improved Bayesian convolution network to analyze health care data using wearable IoT device. IEEE Access 2020, 8, 86411–86418. [Google Scholar] [CrossRef]
- Patle, K.S.; Saini, R.; Kumar, A.; Palaparthy, V.S. Field Evaluation of Smart Sensor System for Plant Disease Prediction Using LSTM Network. IEEE Sensors J. 2021, 22, 3715–3725. [Google Scholar] [CrossRef]
- Gralla, P. Precision Agriculture Yields Higher Profits, Lower Risks. 2018. Available online: https://www.hpe.com/us/en/insights/articles/precision-agriculture-yields-higher-profits-lower-risks-1806.html (accessed on 20 March 2023).
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Polymeni, S.; Skoutas, D.N.; Kormentzas, G.; Skianis, C. FINDEAS: A FinTech-based Approach on Designing and Assessing IoT Systems. IEEE Internet Things J. 2022, 9, 25196–25206. [Google Scholar] [CrossRef]
- Bhat, J.R.; AlQahtani, S.A.; Nekovee, M. FinTech enablers, use cases, and role of future internet of things. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 87–101. [Google Scholar] [CrossRef]
- Karavolos, M.; Tatsis, V.I.; Skoutas, D.N.; Nomikos, N.; Vouyioukas, D.; Skianis, C. A dynamic hybrid clustering scheme for LTE-A networks employing CoMP-DPS. In Proceedings of the 2017 IEEE 22nd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Lund, Sweden, 19–21 June 2017; pp. 1–5. [Google Scholar]
- Figueiredo e Silva, P.; Kaseva, V.; Lohan, E.S. Wireless positioning in IoT: A look at current and future trends. Sensors 2018, 18, 2470. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Agarwal, S.; Sharma, A. A Multi-application Compact Ultra Wideband Vivaldi Antenna for IoT, 5G, ITS, and RFID. In Proceedings of the 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), Ahmedabad, India, 19–22 December 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Qadir, Z.; Le, K.N.; Saeed, N.; Munawar, H.S. Towards 6G Internet of Things: Recent advances, use cases, and open challenges. ICT Express, 2022; in Press. [Google Scholar] [CrossRef]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of things in the 5G era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef] [Green Version]
- Imoize, A.L.; Adedeji, O.; Tandiya, N.; Shetty, S. 6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap. Sensors 2021, 21, 1709. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Shu, L.; Li, K.; Yang, F.; Han, G.; Wang, X.; Pearson, S. Photovoltaic agricultural internet of things towards realizing the next generation of smart farming. IEEE Access 2020, 8, 76300–76312. [Google Scholar] [CrossRef]
- Ragazou, K.; Garefalakis, A.; Zafeiriou, E.; Passas, I. Agriculture 5.0: A New Strategic Management Mode for a Cut Cost and an Energy Efficient Agriculture Sector. Energies 2022, 15, 3113. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry—A systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Pascual, J.; Mora-Martínez, J. Developing ubiquitous sensor network platform using internet of things: Application in precision agriculture. Sensors 2016, 16, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Comission, E. Generational Renewal in EU Agriculture: Statistical Background. 2012. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/agri-economics-brief-06_en.pdf (accessed on 6 March 2023).
- For Rural Development, E.N. Generational Renewal. 2020. Available online: https://enrd.ec.europa.eu/enrd-thematic-work/generational-renewal_en (accessed on 7 March 2023).
- Nehrey, M.; Koval, T.; Rogoza, N.; Galaieva, L. Application possibilities of data science tools in agriculture: A review. In Advances in Artificial Systems for Medicine and Education VI; Springer: Cham, Switzerland, 2023; pp. 253–263. [Google Scholar]
- Global Smart Farming Market—Industry Trends and Forecast to 2029. Available online: https://www.databridgemarketresearch.com/reports/global-smart-farming-market (accessed on 30 May 2023).
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Walch, K. How AI Is Transforming Agriculture. 2019. Available online: https://www.forbes.com/sites/cognitiveworld/2019/07/05/how-ai-is-transforming-agriculture/?sh=529175cf4ad1 (accessed on 15 March 2023).
- Bechar, A.; Vigneault, C. Agricultural robots for field operations: Concepts and components. Biosyst. Eng. 2016, 149, 94–111. [Google Scholar] [CrossRef]
- Bechar, A.; Vigneault, C. Agricultural robots for field operations. Part 2: Operations and systems. Biosyst. Eng. 2017, 153, 110–128. [Google Scholar] [CrossRef]
- Bergerman, M.; Billingsley, J.; Reid, J.; van Henten, E. Robotics in agriculture and forestry. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1463–1492. [Google Scholar]
- R Shamshiri, R.; Weltzien, C.; Hameed, I.A.; J Yule, I.; E Grift, T.; Balasundram, S.K.; Pitonakova, L.; Ahmad, D.; Chowdhary, G. Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. Eng. 2018, 11, 1–14. [Google Scholar] [CrossRef]
- Reddy, N.V.; Reddy, A.; Pranavadithya, S.; Kumar, J.J. A critical review on agricultural robots. Int. J. Mech. Eng. Technol. 2016, 7, 183–188. [Google Scholar]
- Lamborelle, A.; Álvarez, L.F. Farming 4.0: The Future of Agriculture? 2016. Available online: https://www.euractiv.com/section/agriculture-food/infographic/farming-4-0-the-future-of-agriculture/ (accessed on 16 March 2023).
- Sonka, S. Big data and the ag sector: More than lots of numbers. Int. Food Agribus. Manag. Rev. 2014, 17, 1–20. [Google Scholar]
- CBINSIGHTS. Ag Tech Deal Activity More Than Triples. 2017. Available online: https://www.cbinsights.com/research/agriculture-farm-tech-startup-funding-trends/ (accessed on 17 March 2023).
- Intelligence, V.M. Global Agriculture Robots. Mark. Size Status Forecast 2018, 2025, 1–79. [Google Scholar]
- Dixit, S.; Bhatia, V.; Khanganba, S.P.; Agrawal, A. 6G: Sustainable Development for Rural and Remote Communities. Lect. Notes Netw. Syst. 2022, 416, 1–104. [Google Scholar]
- Tomaszewski, L.; Kołakowski, R. Mobile Services for Smart Agriculture and Forestry, Biodiversity Monitoring, and Water Management: Challenges for 5G/6G Networks. Telecom 2023, 4, 67–99. [Google Scholar] [CrossRef]
- Quy, V.K.; Hau, N.V.; Anh, D.V.; Quy, N.M.; Ban, N.T.; Lanza, S.; Randazzo, G.; Muzirafuti, A. IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [Google Scholar] [CrossRef]
- Humbal, A.; Pathak, B. Application of Nanotechnology in Plant Growth and Diseases Management: Tool for Sustainable Agriculture. In Agricultural and Environmental Nanotechnology: Novel Technologies and Their Ecological Impact; Fernandez-Luqueno, F., Patra, J.K., Eds.; Springer Nature: Singapore, 2023; pp. 145–168. [Google Scholar] [CrossRef]
- Ghobadpour, A.; Monsalve, G.; Cardenas, A.; Mousazadeh, H. Off-Road Electric Vehicles and Autonomous Robots in Agricultural Sector: Trends, Challenges, and Opportunities. Vehicles 2022, 4, 843–864. [Google Scholar] [CrossRef]
- Shaikh, T.A.; Rasool, T.; Lone, F.R. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Qazi, S.; Khawaja, B.A.; Farooq, Q.U. IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends. IEEE Access 2022, 10, 21219–21235. [Google Scholar] [CrossRef]
- Vaezi, M.; Azari, A.; Khosravirad, S.R.; Shirvanimoghaddam, M.; Azari, M.M.; Chasaki, D.; Popovski, P. Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Toward 6G. IEEE Commun. Surv. Tutorials 2022, 24, 1117–1174. [Google Scholar] [CrossRef]
- Azari, M.M.; Solanki, S.; Chatzinotas, S.; Kodheli, O.; Sallouha, H.; Colpaert, A.; Montoya, J.F.M.; Pollin, S.; Haqiqatnejad, A.; Mostaani, A.; et al. Evolution of Non-Terrestrial Networks from 5G to 6G: A Survey. IEEE Commun. Surv. Tutorials 2022, 24, 2633–2672. [Google Scholar] [CrossRef]
- Bathaei, A.; Štreimikienė, D. A Systematic Review of Agricultural Sustainability Indicators. Agriculture 2023, 13, 241. [Google Scholar] [CrossRef]
- Mgomezulu, W.R.; Machira, K.; Edriss, A.K.; Pangapanga-Phiri, I. Modelling farmers’ adoption decisions of sustainable agricultural practices under varying agro-ecological conditions: A new perspective. Innov. Green Dev. 2023, 2, 100036. [Google Scholar] [CrossRef]
- Lankoski, J.; Lankoski, L. Environmental sustainability in agriculture: Identification of bottlenecks. Ecol. Econ. 2023, 204, 107656. [Google Scholar] [CrossRef]
- Sendros, A.; Drosatos, G.; Efraimidis, P.S.; Tsirliganis, N.C. Blockchain Applications in Agriculture: A Scoping Review. Appl. Sci. 2022, 12, 8061. [Google Scholar] [CrossRef]
- Zhang, Y. The Role of Precision Agriculture. Resour. Mag. 2019, 26, 9. [Google Scholar]
- Abdel Hakeem, S.A.; Hussein, H.H.; Kim, H. Vision and research directions of 6G technologies and applications. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 2419–2442. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Kelechi, A.H.; Albreem, M.A.; Chaudhry, S.A.; Zia, M.S.; Kim, S. Sixth Generation (6G) Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions. Symmetry 2020, 12, 676. [Google Scholar] [CrossRef]
- Guo, F.; Yu, F.R.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C.M. Enabling Massive IoT Toward 6G: A Comprehensive Survey. IEEE Internet Things J. 2021, 8, 11891–11915. [Google Scholar] [CrossRef]
- Alkhalaileh, M.; Calheiros, R.N.; Nguyen, Q.V.; Javadi, B. Performance Analysis of Mobile, Edge and Cloud Computing Platforms for Distributed Applications. In Mobile Edge Computing; Mukherjee, A., De, D., Ghosh, S.K., Buyya, R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 21–45. [Google Scholar] [CrossRef]
- Zhu, G.; Lyu, Z.; Jiao, X.; Liu, P.; Chen, M.; Xu, J.; Cui, S.; Zhang, P. Pushing AI to wireless network edge: An overview on integrated sensing, communication, and computation towards 6G. Sci. China Inf. Sci. 2023, 66, 130301. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, J.; Shu, A.; Chen, Y.; Chen, J.; Yang, Y.; Tang, W.; Zhang, Y. Study of convolutional neural network-based semantic segmentation methods on edge intelligence devices for field agricultural robot navigation line extraction. Comput. Electron. Agric. 2023, 209, 107811. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Chen, Y.; Yang, W.; Zhang, W.; He, Y. Real-time strawberry detection using deep neural networks on embedded system (rtsd-net): An edge AI application. Comput. Electron. Agric. 2022, 192, 106586. [Google Scholar] [CrossRef]
- Al-Quraan, M.; Mohjazi, L.; Bariah, L.; Centeno, A.; Zoha, A.; Arshad, K.; Assaleh, K.; Muhaidat, S.; Debbah, M.; Imran, M.A. Edge-Native Intelligence for 6G Communications Driven by Federated Learning: A Survey of Trends and Challenges. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 7, 957–979. [Google Scholar] [CrossRef]
- Letaief, K.B.; Shi, Y.; Lu, J.; Lu, J. Edge artificial intelligence for 6G: Vision, enabling technologies, and applications. IEEE J. Sel. Areas Commun. 2021, 40, 5–36. [Google Scholar] [CrossRef]
- Ali, O.; Jaradat, A.; Kulakli, A.; Abuhalimeh, A. A comparative study: Blockchain technology utilization benefits, challenges and functionalities. IEEE Access 2021, 9, 12730–12749. [Google Scholar] [CrossRef]
- Jadav, N.K.; Rathod, T.; Gupta, R.; Tanwar, S.; Kumar, N.; Alkhayyat, A. Blockchain and artificial intelligence-empowered smart agriculture framework for maximizing human life expectancy. Comput. Electr. Eng. 2023, 105, 108486. [Google Scholar] [CrossRef]
- IBM. Blockchain and Artificial Intelligence (AI)|IBM. Available online: https://www.ibm.com/topics/blockchain-ai (accessed on 26 March 2023).
- Lin, X.; Rommer, S.; Euler, S.; Yavuz, E.A.; Karlsson, R.S. 5G from Space: An Overview of 3GPP Non-Terrestrial Networks. IEEE Commun. Stand. Mag. 2021, 5, 147–153. [Google Scholar] [CrossRef]
- Michailidis, E.T.; Maliatsos, K.; Skoutas, D.N.; Vouyioukas, D.; Skianis, C. Secure UAV-Aided Mobile Edge Computing for IoT: A Review. IEEE Access 2022, 10, 86353–86383. [Google Scholar] [CrossRef]
- Cariou, C.; Moiroux-Arvis, L.; Pinet, F.; Chanet, J.P. Internet of Underground Things in Agriculture 4.0: Challenges, Applications and Perspectives. Sensors 2023, 23, 4058. [Google Scholar] [CrossRef] [PubMed]
- Sambo, D.W.; Forster, A.; Yenke, B.O.; Sarr, I.; Gueye, B.; Dayang, P. Wireless underground sensor networks path loss model for precision agriculture (WUSN-PLM). IEEE Sens. J. 2020, 20, 5298–5313. [Google Scholar] [CrossRef]
- Bello, O.; Zeadally, S. Internet of underwater things communication: Architecture, technologies, research challenges and future opportunities. Ad Hoc Netw. 2022, 135, 102933. [Google Scholar] [CrossRef]
- Ray, P.P. A review on 6G for space-air-ground integrated network: Key enablers, open challenges, and future direction. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 6949–6976. [Google Scholar] [CrossRef]
- Yu, Q.; Dong, D.; Wang, Y.; Petersen, I.R. Capability comparison of quantum sensors of single or two qubits for a spin chain system. IFAC-PapersOnLine 2020, 53, 263–268. [Google Scholar] [CrossRef]
- Batra, G.; Gschwendtner, M.; Ostojic, I.; Queirolo, A.; Soller, H.; Wester, L. Shaping the Long Race in Quantum Communication and Quantum Sensing; McKinsey & Company: Atlanta, GA, USA, 2021. [Google Scholar]
- Cao, Y.; Zhao, Y.; Wang, Q.; Zhang, J.; Ng, S.X.; Hanzo, L. The evolution of quantum key distribution networks: On the road to the qinternet. IEEE Commun. Surv. Tutorials 2022, 24, 839–894. [Google Scholar] [CrossRef]
- Suriya, M. Machine learning and quantum computing for 5G/6G communication networks—A survey. Int. J. Intell. Netw. 2022, 3, 197–203. [Google Scholar]
- Huang, H.Y.; Broughton, M.; Mohseni, M.; Babbush, R.; Boixo, S.; Neven, H.; McClean, J.R. Power of data in quantum machine learning. Nat. Commun. 2021, 12, 2631. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Y.; Lu, W.; Gao, Y.; Gong, Y.; Cao, J. 6G-Enabled Smart Agriculture: A Review and Prospect. Electronics 2022, 11, 2845. [Google Scholar] [CrossRef]
- Alwis, C.D.; Kalla, A.; Pham, Q.V.; Kumar, P.; Dev, K.; Hwang, W.J.; Liyanage, M. Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research. IEEE Open J. Commun. Soc. 2021, 2, 836–886. [Google Scholar] [CrossRef]
- Ge, H.; Lv, M.; Lu, X.; Jiang, Y.; Wu, G.; Li, G.; Li, L.; Li, Z.; Zhang, Y. Applications of THz Spectral Imaging in the Detection of Agricultural Products. Photonics 2021, 8, 518. [Google Scholar] [CrossRef]
- Usman, M.; Ansari, S.; Taha, A.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Terahertz-Based Joint Communication and Sensing for Precision Agriculture: A 6G Use-Case. Front. Commun. Networks 2022, 3, 3. [Google Scholar] [CrossRef]
- Basharat, S.; Hassan, S.A.; Pervaiz, H.; Mahmood, A.; Ding, Z.; Gidlund, M. Reconfigurable Intelligent Surfaces: Potentials, Applications, and Challenges for 6G Wireless Networks. IEEE Wirel. Commun. 2021, 28, 184–191. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Zhong, C.; Zhang, Z. Robust Design for Intelligent Reflecting Surfaces Assisted MISO Systems. IEEE Commun. Lett. 2020, 24, 2353–2357. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Du, B.; Shu, L.; Han, G. Rethinking Sustainable Sensing in Agricultural Internet of Things: From Power Supply Perspective. IEEE Wirel. Commun. 2022, 29, 102–109. [Google Scholar] [CrossRef]
- Khalili, A.; Zargari, S.; Wu, Q.; Ng, D.W.K.; Zhang, R. Multi-objective resource allocation for IRS-aided SWIPT. IEEE Wirel. Commun. Lett. 2021, 10, 1324–1328. [Google Scholar] [CrossRef]
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A Decision Support System for Urban Agriculture Using Digital Twin: A Case Study With Aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Jans-Singh, M.; Leeming, K.; Choudhary, R.; Girolami, M. Digital twin of an urban-integrated hydroponic farm. Data-Centric Eng. 2020, 1, e20. [Google Scholar] [CrossRef]
- Anthony Howard, D.; Ma, Z.; Mazanti Aaslyng, J.; Nørregaard Jørgensen, B. Data Architecture for Digital Twin of Commercial Greenhouse Production. In Proceedings of the 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh City, Vietnam, 14–15 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Batty, M. Digital twins. Environ. Plan. B Urban Anal. City Sci. 2018, 45, 817–820. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. A survey on green 6G network: Architecture and technologies. IEEE Access 2019, 7, 175758–175768. [Google Scholar] [CrossRef]
- Mao, B.; Tang, F.; Kawamoto, Y.; Kato, N. AI models for green communications towards 6G. IEEE Commun. Surv. Tutorials 2021, 24, 210–247. [Google Scholar] [CrossRef]
- Benhamaid, S.; Bouabdallah, A.; Lakhlef, H. Recent advances in energy management for Green-IoT: An up-to-date and comprehensive survey. J. Netw. Comput. Appl. 2022, 198, 103257. [Google Scholar] [CrossRef]
- Bradu, P.; Biswas, A.; Nair, C.; Sreevalsakumar, S.; Patil, M.; Kannampuzha, S.; Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; et al. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environ. Sci. Pollut. Res. 2022, 1–32. [Google Scholar] [CrossRef]
- Popli, S.; Jha, R.K.; Jain, S. Green IoT: A Short Survey on Technical Evolution & Techniques. Wirel. Pers. Commun. 2022, 123, 525–553. [Google Scholar] [CrossRef]
- Lien, S.Y.; Hung, S.C.; Deng, D.J.; Wang, Y.J. Efficient ultra-reliable and low latency communications and massive machine-type communications in 5G new radio. In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–7. [Google Scholar]
- Zhang, L.; Liang, Y.C.; Niyato, D. 6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Commun. 2019, 16, 1–14. [Google Scholar] [CrossRef]
- Imadur, R.; Sara, M.; Olof, L.; Christian, H.; Henning, W.; Claes, T.; Paul, S.; Patrik, P.; Dirk, G. 5G evolution toward 5G Advanced: An overview of 3GPP releases 17 and 18. Ericsson Technol. Rev. 2021, 2021, 2–12. [Google Scholar]
- Ji, B.; Han, Y.; Liu, S.; Tao, F.; Zhang, G.; Fu, Z.; Li, C. Several Key Technologies for 6G: Challenges and Opportunities. IEEE Commun. Stand. Mag. 2021, 5, 44–51. [Google Scholar] [CrossRef]
- Nawaz, S.J.; Sharma, S.K.; Mansoor, B.; Patwary, M.N.; Khan, N.M. Non-Coherent and Backscatter Communications: Enabling Ultra-Massive Connectivity in 6G Wireless Networks. IEEE Access 2021, 9, 38144–38186. [Google Scholar] [CrossRef]
- Naqvi, S.M.Z.A.; Saleem, S.R.; Tahir, M.N.; Li, S.; Hussain, S.; Ul Haq, S.I.; Awais, M. Role of 5G and 6G Technology in Precision Agriculture. Environ. Sci. Proc. 2022, 23, 3. [Google Scholar] [CrossRef]
- Rawal, S. IOT based smart irrigation system. Int. J. Comput. Appl. 2017, 159, 7–11. [Google Scholar] [CrossRef]
- Balaji, G.N.; Nandhini, V.; Mithra, S.; Priya, N.; Naveena, R. IoT based smart crop monitoring in farm land. Imp. J. Interdiscip. Res. (IJIR) 2018, 4, 88–92. [Google Scholar]
- Mohapatra, D.; Subudhi, B. Development of a Cost Effective IoT-based Weather Monitoring System. IEEE Consum. Electron. Mag. 2022, 11, 81–86. [Google Scholar] [CrossRef]
- Saravanan, K.; Saraniya, S. Cloud IOT based novel livestock monitoring and identification system using UID. Sens. Rev. 2017, 38, 21–33. [Google Scholar]
- Furukawa, F.; Maruyama, K.; Saito, Y.K.; Kaneko, M. Corn height estimation using UAV for yield prediction and crop monitoring. In Unmanned Aerial Vehicle: Applications in Agriculture and Environment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 51–69. [Google Scholar]
- Shah, N.P.; Bhatt, P. Greenhouse automation and monitoring system design and implementation. Int. J. Adv. Res. Comput. Sci. 2017, 8, 468–471. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Guo, H.; Qi, M.; Kato, N. Envisioning Device-to-Device Communications in 6G. IEEE Netw. 2020, 34, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, N.H.; Böcker, S.; Moerman, I.; López, O.A.; Munari, A.; Mikhaylov, K.; Clazzer, F.; Bartz, H.; Park, O.S.; Mercier, E.; et al. Machine type communications: Key drivers and enablers towards the 6G era. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 134. [Google Scholar] [CrossRef]
- Coffin, A.; Bonnefoy-Claudet, C.; Chassaigne, M.; Jansen, A.; Gée, C. PARADe: A low-cost open-source device for photosynthetically active radiation (PAR) measurements. Smart Agric. Technol. 2021, 1, 100018. [Google Scholar] [CrossRef]
- Akitsu, T.; Nasahara, K.N.; Hirose, Y.; Ijima, O.; Kume, A. Quantum sensors for accurate and stable long-term photosynthetically active radiation observations. Agric. For. Meteorol. 2017, 237, 171–183. [Google Scholar] [CrossRef]
- Lacerda, L.N.; Snider, J.L.; Cohen, Y.; Liakos, V.; Gobbo, S.; Vellidis, G. Using UAV-based thermal imagery to detect crop water status variability in cotton. Smart Agric. Technol. 2022, 2, 100029. [Google Scholar] [CrossRef]
- Crawford, S.E.; Shugayev, R.A.; Paudel, H.P.; Lu, P.; Syamlal, M.; Ohodnicki, P.R.; Chorpening, B.; Gentry, R.; Duan, Y. Quantum sensing for energy applications: Review and perspective. Adv. Quantum Technol. 2021, 4, 2100049. [Google Scholar] [CrossRef]
- Chhipa, H. Applications of nanotechnology in agriculture. In Methods in Microbiology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 115–142. [Google Scholar]
- Bapatla, A.K.; Mohanty, S.P.; Kougianos, E. sFarm: A distributed ledger based remote crop monitoring system for smart farming. In Proceedings of the IFIP International Internet of Things Conference; Springer: Berlin/Heidelberg, Germany, 2021; pp. 13–31. [Google Scholar]
- Wakchaure, M.; Patle, B.; Mahindrakar, A. Application of AI techniques and robotics in agriculture: A review. Artif. Intell. Life Sci. 2023, 3, 100057. [Google Scholar] [CrossRef]
- Cheng, C.; Fu, J.; Su, H.; Ren, L. Recent Advancements in Agriculture Robots: Benefits and Challenges. Machines 2023, 11, 48. [Google Scholar] [CrossRef]
- Ranjha, A.; Kaddoum, G.; Dev, K. Facilitating URLLC in UAV-Assisted Relay Systems With Multiple-Mobile Robots for 6G Networks: A Prospective of Agriculture 4.0. IEEE Trans. Ind. Inform. 2022, 18, 4954–4965. [Google Scholar] [CrossRef]
- Bacco, M.; Davoli, F.; Giambene, G.; Gotta, A.; Luglio, M.; Marchese, M.; Patrone, F.; Roseti, C. Networking Challenges for Non-Terrestrial Networks Exploitation in 5G. In Proceedings of the 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019; pp. 623–628. [Google Scholar] [CrossRef]
- Kiran, S.; Kanumalli, S.S.; Krishna, K.V.S.S.R.; Chandra, N. Internet of things integrated smart agriculture for weather predictions and preventive mechanism. In Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Chen, Y.; Tao, F. Potential of remote sensing data-crop model assimilation and seasonal weather forecasts for early-season crop yield forecasting over a large area. Field Crop. Res. 2022, 276, 108398. [Google Scholar] [CrossRef]
- Gill, S.S.; Xu, M.; Ottaviani, C.; Patros, P.; Bahsoon, R.; Shaghaghi, A.; Golec, M.; Stankovski, V.; Wu, H.; Abraham, A.; et al. AI for next generation computing: Emerging trends and future directions. Internet Things 2022, 19, 100514. [Google Scholar] [CrossRef]
- Singh, J.; Bhangu, K.S. Contemporary Quantum Computing Use Cases: Taxonomy, Review and Challenges. Arch. Comput. Methods Eng. 2023, 30, 615–638. [Google Scholar] [CrossRef]
- Bayerstadler, A.; Becquin, G.; Binder, J.; Botter, T.; Ehm, H.; Ehmer, T.; Erdmann, M.; Gaus, N.; Harbach, P.; Hess, M.; et al. Industry quantum computing applications. EPJ Quantum Technol. 2021, 8, 25. [Google Scholar]
- Maheshwari, D.; Garcia-Zapirain, B.; Sierra-Sosa, D. Quantum machine learning applications in the biomedical domain: A systematic review. IEEE Access 2022, 10, 80463–80484. [Google Scholar] [CrossRef]
- Surendiran, B.; Dhanasekaran, K.; Tamizhselvi, A. A Study on Quantum Machine Learning for Accurate and Efficient Weather Prediction. In Proceedings of the 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Dharan, Nepal, 10–12 November 2022; pp. 534–537. [Google Scholar]
- Hewa, T.; Gür, G.; Kalla, A.; Ylianttila, M.; Bracken, A.; Liyanage, M. The Role of Blockchain in 6G: Challenges, Opportunities and Research Directions. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sirohi, D.; Kumar, N.; Rana, P.S.; Tanwar, S.; Iqbal, R.; Hijjii, M. Federated learning for 6G-enabled secure communication systems: A comprehensive survey. Artif. Intell. Rev. 2023, 1–93. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Mahenthiran, N.; Sittampalam, H.; Yogarajah, S.; Jeyarajah, S.; Chandrasiri, S.; Kugathasan, A. Smart Pest Management: An Augmented Reality-Based Approach for an Organic Cultivation. In Proceedings of the 2021 2nd International Informatics and Software Engineering Conference (IISEC), Ankara, Turkey, 16–17 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Hurst, W.; Mendoza, F.R.; Tekinerdogan, B. Augmented reality in precision farming: Concepts and applications. Smart Cities 2021, 4, 1454–1468. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef]
- Feng, C.; Chuanheng, S.; Bin, X.; Na, L.; Haishen, L. Agricultural Metaverse: Key Technologies, Application Scenarios, Challenges and Prospects; FAO: Rome, Italy, 2022. [Google Scholar]
- Nakhle, F.; Harfouche, A.L. Extended reality gives digital agricultural biotechnology a new dimension. Trends Biotechnol. 2023, 41, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Dalhaus, T.; Wang, P.; Huang, J. Blockchain Technology for Agriculture: Applications and Rationale. Front. Blockchain 2020, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Periakaruppan, R.; Palanimuthu, V.; Abed, S.A.; Danaraj, J. New perception about the use of nanofungicides in sustainable agriculture practices. Arch. Microbiol. 2022, 205, 4. [Google Scholar] [CrossRef]
- Valle-García, J.D.; Ali, A.; Patra, J.K.; Kerry, R.G.; Das, G.; Fernández-Luqueño, F. Integration of Eco-Friendly Biological and Nanotechnological Strategies for Better Agriculture: A Sustainable Approach. In Agricultural and Environmental Nanotechnology: Novel Technologies and Their Ecological Impact; Fernandez-Luqueno, F., Patra, J.K., Eds.; Springer Nature: Singapore, 2023; pp. 647–674. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2022–2031; Technical Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; ISBN 978-92-64-67537-7. [Google Scholar]
- FAO. OECD Agriculture Statistics. 2022. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/data/oecd-agriculture-statistics_agr-data-en (accessed on 26 March 2023).
Requirements | 5G-IoT | 6G-IoT |
---|---|---|
Throughput (Gbps) | 20 | 100 |
Latency (ms) | 1 | [0.01–0.1] |
Energy Efficiency | ×1000 of 4G | ×10 of 5G |
Network Coverage (global %) | 70 | 99 |
Spectral Efficiency (bps/Hz) | 30 | 100 |
Massive Connectivity (devices/km) | 10 | 10 |
NTN Integration | Partially | Fully (Satellites & UAVs) |
AI | Partially | Fully |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polymeni, S.; Plastras, S.; Skoutas, D.N.; Kormentzas, G.; Skianis, C. The Impact of 6G-IoT Technologies on the Development of Agriculture 5.0: A Review. Electronics 2023, 12, 2651. https://doi.org/10.3390/electronics12122651
Polymeni S, Plastras S, Skoutas DN, Kormentzas G, Skianis C. The Impact of 6G-IoT Technologies on the Development of Agriculture 5.0: A Review. Electronics. 2023; 12(12):2651. https://doi.org/10.3390/electronics12122651
Chicago/Turabian StylePolymeni, Sofia, Stefanos Plastras, Dimitrios N. Skoutas, Georgios Kormentzas, and Charalabos Skianis. 2023. "The Impact of 6G-IoT Technologies on the Development of Agriculture 5.0: A Review" Electronics 12, no. 12: 2651. https://doi.org/10.3390/electronics12122651