CellNet: A Lightweight Model towards Accurate LOC-Based High-Speed Cell Detection
Abstract
:1. Introduction
- (1)
- A lightweight, yet powerful cell detection model: We propose a robust and fast end-to-end cell detection system, CellNet, which is small in size and highly efficient. The novel CNN architecture is specifically tailored for resource-constrained environments.
- (2)
- A novel CellConv block to reduce the number of parameters and FLOPs: The proposed CellConv block, which is an effective convolutional block to reduce the parameters and FLOPs of the conventional convolutional layer, is widely used as a building block in the feature extraction backbone of CellNet.
- (3)
- CellNet is designed for easy deployment on mobile devices: The compact and regular architecture of the proposed CellNet facilitates its deployment on graphics processing units (GPUs), CPUs, field-programmable gate arrays (FPGAs), and in other resource-limited environments to build a real-time cell detection system that accelerates online LOC-based fast-flowing cell analysis.
2. Related Work
3. Designing Efficient Building Blocks
3.1. Depthwise Separable Convolutions
3.2. Inverted Residual and Linear Bottlenecks
3.3. Efficient CellConv Blocks
4. The Proposed CellNet for Cell Detection
4.1. CellNet Architecture
4.1.1. CellConv Network Backbone
4.1.2. Detection Layer
4.2. Refinement of Anchor Scales
4.3. Training of CellNet
5. Experiments and Results
5.1. Datasets and Experimental Setup
5.1.1. Datasets
5.1.2. Experimental Setup
5.2. Cell Dataset Classification Performance
5.3. Analysis of Cell Detection Results
5.3.1. Evaluation Criteria
5.3.2. Comprehensive Analysis Compared with SSD Detection Architectures
5.3.3. Comprehensive Analysis Compared with YOLOv3 Detection Architectures
5.4. Ablation Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlin, M.A.; Grochowski, M.; Kwasigroch, A.; Mikołajczyk, A.; Szurowska, E.; Grzywińska, M.; Sabisz, A. A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System. Electronics 2021, 10, 2208. [Google Scholar] [CrossRef]
- Mahum, R.; Rehman, S.U.; Okon, O.D.; Alabrah, A.; Meraj, T.; Rauf, H.T. A Novel Hybrid Approach Based on Deep CNN to Detect Glaucoma Using Fundus Imaging. Electronics 2022, 11, 26. [Google Scholar] [CrossRef]
- Guan, Z.; Zhao, P.; Wang, X.; Wang, G. Modeling Radio-Frequency Devices Based on Deep Learning Technique. Electronics 2021, 10, 1710. [Google Scholar] [CrossRef]
- Veta, M.; Pluim, J.P.W.; van Diest, P.J.; Viergever, M.A. Breast cancer histopathology image analysis: A review. IEEE Trans. Biomed. Eng. 2014, 61, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Nitta, N.; Sugimura, T.; Isozaki, A.; Mikami, H.; Hiraki, K.; Sakuma, S.; Iino, T.; Arai, F.; Endo, T.; Fujiwaki, Y.; et al. Intelligent image-activated cell sorting. Cell 2018, 175, 266–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, Y.J.; Lee, D.; Kang, J.; Lee, K.; Chung, W.K. Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip. Sci. Rep. 2017, 7, 11651. [Google Scholar] [CrossRef] [PubMed]
- Nolte, M.A.; Kraal, G.; Mebius, R.E. Effects of fluorescent and nonfluorescent tracing methods on lymphocyte migration in vivo. J. Int. Soc. Anal. Cytol. 2004, 61, 35–44. [Google Scholar] [CrossRef]
- Gu, Q.; Kawahara, T.; Aoyama, T.; Takaki, T.; Ishii, I.; Takemoto, A.; Sakamoto, N. LOC-Based high-throughput cell morphology analysis system. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1346–1356. [Google Scholar] [CrossRef]
- Lee, K.-M.; Li, Q.; Daley, W. Effects of classification methods on color-based feature detection with food processing applications. IEEE Trans. Autom. Sci. Eng. 2007, 4, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zheng, S.; Lu, J.; Yin, Z. Polygon-invariant generalized Hough transform for high-speed vision-based positioning. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1367–1384. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2005; pp. 886–893. [Google Scholar]
- Li, Z.; Ma, L.; Long, X.; Chen, Y.; Deng, H.; Yan, F.; Gu, Q. Hardware-Oriented Algorithm for High-Speed Laser Centerline Extraction Based on Hessian Matrix. IEEE Trans. Instrum. Meas. 2021, 70, 1–14. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. 2018. Available online: https://arxiv.gg363.site/abs/1804.02767 (accessed on 19 March 2020).
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017. Available online: https://arxiv.gg363.site/abs/1704.04861 (accessed on 24 March 2020).
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Ojala, T.; Pietikinen, M.; Harwood, D. A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Al-Kofahi, Y.; Lassoued, W.; Lee, W.; Roysam, B. Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 2010, 57, 741–852. [Google Scholar] [CrossRef] [PubMed]
- Cosatto, E.; Miller, M.; Graf, H.P.; Meyer, J.S. Grading Nuclear Pleomorphism on Histological Micrographs. In Proceedings of the IEEE International Conference on Pattern Recognition (ICPR), Tampa, FL, USA, 8–11 December 2008; pp. 1–4. [Google Scholar]
- Ali, R.; Gooding, M.; Szilágyi, T.; Vojnovic, B.; Christlieb, M.; Brady, M. Automatic segmentation of adherent biological cell boundaries and nuclei from brightfield microscopy images. Mach. Vis. Appl. 2012, 23, 607–621. [Google Scholar] [CrossRef]
- Gu, Q.; Aoyama, T.; Takaki, T.; Ishii, I. Simultaneous vision-based shape and motion analysis of cells fast-flowing in a microchannel. IEEE Trans. Autom. Sci. Eng. 2015, 12, 204–215. [Google Scholar] [CrossRef]
- Vink, J.P.; Van Leeuwen, M.B.; Van Deurzen, C.H.M.; De Haan, G. Efficient nucleus detector in histopathology images. J. Microsc. 2013, 249, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Xu, J.; Xiang, L.; Liu, Q.; Gilmore, H.; Wu, J.; Tang, J.; Madabhushi, A. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 2016, 35, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Cireşan, D.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Mitosis detection in breast cancer histology images with deep neural networks. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Granada, Spain, 16–20 September 2013; pp. 411–418. [Google Scholar]
- Xie, Y.; Xing, F.; Shi, X.; Kong, X.; Su, H.; Yang, L. Efficient and robust cell detection: A structured regression approach. Med. Imaging Anal. 2018, 44, 245–254. [Google Scholar] [CrossRef]
- Xue, Y.; Ray, N. Cell Detection in Microscopy Images with Deep Convolutional Neural Network and Compressed Sensing. 2017. Available online: https://arxiv.org/abs/1708.03307 (accessed on 5 April 2020).
- Dong, B.; Shao, L.; Costa, M.D.; Bandmann, O.; Frangi, A.F. Deep learning for automatic cell detection in wide-field microscopy zebrafish images. In Proceedings of the IEEE 12th International Symposium on Biomedical Imaging, Brooklyn, NY, USA, 16–19 April 2015; pp. 772–776. [Google Scholar]
- Sirinukunwattana, K.; Raza, S.; Tsang, Y.; Snead, D.; Cree, I.; Rajpoot, N. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1196–1206. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-Y.; Lin, T.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; et al. Microsoft COCO: Common Objects in Context. 2015. Available online: https://arxiv.org/abs/1405.0312 (accessed on 12 April 2020).
- Visual Object Classes Challenge 2012 (VOC2012). 23 October 2016. Available online: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ (accessed on 19 April 2020).
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the Computer Vision and Pattern Recognition (ICCV), Venice, Italy, 30 October–1 November 2017; pp. 2980–2988. [Google Scholar]
- Yang, H.; Chen, Y.; Song, K.; Yin, Z. Multiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defects. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1450–1467. [Google Scholar] [CrossRef]
- Long, X.; Hu, S.; Hu, Y.; Gu, Q.; Ishii, I. An FPGA-Based Ultra-High-Speed Object Detection Algorithm with Multi-Frame Information Fusion. Sensors 2019, 19, 3707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Long, X.; Xu, D.; Gu, Q.; Ishii, I. An Ultrahigh-Speed Object Detection Method with Projection-Based Position Compensation. IEEE Trans. Instrum. Meas. 2020, 69, 4796–4806. [Google Scholar] [CrossRef]
- Xie, Q.; Li, D.; Xu, J.; Yu, Z.; Wang, J. Automatic detection and classification of sewer defects via hierarchical deep learning. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1836–1847. [Google Scholar] [CrossRef]
- Iandola, F.; Han, S.; Moskewicz, M.; Ashraf, K.; Dally, W.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50× Fewer Parameters and <0.5 MB Model Size. 2016. Available online: https://arxiv.org/pdf/1602.07360v3.pdf (accessed on 1 May 2020).
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Swish: A Self-Gated Activation Function. 2017. Available online: https://arxiv.org/abs/1710.05941v1 (accessed on 3 May 2020).
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for Mobilenetv3. May 2019. Available online: https://arxiv.gg363.site/abs/1905.02244 (accessed on 9 May 2020).
- Gu, Q.; Aoyama, T.; Takaki, T.; Ishii, I. Rapid vision-based shape and motion analysis system for fast-flowing cells in a microchannel. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 5848–5853. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
Input Tensor | Operations | Output Tensor |
---|---|---|
PW Conv, H-Swish | ||
DW Conv, H-Swish | ||
PW Conv, Linear |
Stage | Input | Operator | Exp Size | #Out | NL | Stride |
---|---|---|---|---|---|---|
Conv1 | Conv2d, 3 × 3 | - | 8 | LK | 1 | |
Conv2 | Conv2d, 3 × 3 | - | 16 | LK | 2 | |
CellConv3 | CellConv, 3 × 3 | 48 | 16 | HS | 1 | |
CellConv4 | CellConv, 3 × 3 | 48 | 24 | HS | 2 | |
CellConv5 | CellConv, 3 × 3 | 72 | 24 | HS | 1 | |
CellConv6 | CellConv, 3 × 3 | 72 | 32 | HS | 2 | |
CellConv7 | CellConv, 3 × 3 | 96 | 48 | HS | 2 | |
CellConv8 | CellConv, 3 × 3 | 144 | 64 | HS | 2 | |
Conv9 | Conv2d, 3 × 3 | - | 64 | LK | 1 | |
Det10 | Conv2d, 1 × 1 | - | 36 | - | 1 |
Network | Top-1 Acc | #Params | #FLOPs |
---|---|---|---|
ResNet-18 | 98.09% | 11.18 M 1 | 1.82 B 2 |
DarkNet-53 | 98.32% | 40.59 M | 7.14 B |
MobileNetV2 | 98.29% | 2.23 M | 0.30 B |
MobileNetV3 | 98.07% | 3.80 M | 0.25 B |
CellNet (Ours) | 98.16% | 0.08 M | 0.10 B |
Network | mAP | #Params | #FLOPs | Inference 1 | fps (GPU) | Inference 2 | fps (CPU) |
---|---|---|---|---|---|---|---|
SSD300 | 97.26% | 24.55 M | 30.79 B | 5.9 ms | 169.5 | 179.1 ms | 5.6 |
MobileNetV1-SSD | 98.41% | 7.49 M | 1.34 B | 7.6 ms | 131.6 | 59.1 ms | 16.9 |
MobileNetV1-SSDLite | 96.05% | 4.09 M | 1.14 B | 8.2 ms | 122.0 | 70.3 ms | 14.2 |
MobileNetV2-SSDLite | 97.21% | 3.16 M | 0.67 B | 12.6 ms | 79.4 | 92.9 ms | 10.8 |
YOLOv3 | 98.62% | 61.56 M | 9.49 B | 12.5 ms | 80.0 | 113.3 ms | 8.8 |
YOLOv3-tiny | 98.41% | 8.64 M | 0.80 B | 3.0 ms | 333.3 | 26.2 ms | 38.2 |
MobileNetV2-YOLOv3 | 98.07% | 4.78 M | 0.46 B | 7.4 ms | 135.1 | 52.3 ms | 19.1 |
CellNet (Ours) | 98.70% | 0.08 M | 0.10 B | 2.0 ms | 500.0 | 11.4 ms | 87.7 |
CellConv | h-Swish | Residual | mAP | #Params | #FLOPs | 1 | |
---|---|---|---|---|---|---|---|
1 | 97.41% | 0.13 M | 177.07 M | 2.86 ms | |||
2 | 🗸 | 97.61% | 0.08 M | 103.51 M | 1.49 ms | ||
3 | 🗸 | 🗸 | 98.33% | 0.08 M | 103.51 M | 1.56 ms | |
4 | 🗸 | 🗸 | 98.40% | 0.08 M | 106.33 M | 1.93 ms | |
5 | 🗸 | 🗸 | 🗸 | 98.70% | 0.08 M | 106.33 M | 1.98 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, X.; Ishii, I.; Gu, Q. CellNet: A Lightweight Model towards Accurate LOC-Based High-Speed Cell Detection. Electronics 2022, 11, 1407. https://doi.org/10.3390/electronics11091407
Long X, Ishii I, Gu Q. CellNet: A Lightweight Model towards Accurate LOC-Based High-Speed Cell Detection. Electronics. 2022; 11(9):1407. https://doi.org/10.3390/electronics11091407
Chicago/Turabian StyleLong, Xianlei, Idaku Ishii, and Qingyi Gu. 2022. "CellNet: A Lightweight Model towards Accurate LOC-Based High-Speed Cell Detection" Electronics 11, no. 9: 1407. https://doi.org/10.3390/electronics11091407
APA StyleLong, X., Ishii, I., & Gu, Q. (2022). CellNet: A Lightweight Model towards Accurate LOC-Based High-Speed Cell Detection. Electronics, 11(9), 1407. https://doi.org/10.3390/electronics11091407