Multiservice Loss Models in C-RAN Supporting Compound Poisson Traffic
Abstract
:1. Introduction
2. The Proposed Compound Poisson MC-SC Model
2.1. The Analytical Model
2.2. The Brute Force Method
2.3. The Proposed Convolution Algorithm for the c-MC-SC Model
3. Evaluation
4. The Proposed Generalized c-MC-MC Model
4.1. The Analytical Model
4.2. The Brute Force Method
4.3. The Proposed Convolution Algorithm for the c-MC-MC Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ericsson. Ericsson Mobility Report November 2021; Report; Ericsson: Stockholm, Sweden, 2021. [Google Scholar]
- Checko, A.; Christiansen, H.L.; Yan, Y.; Scolari, L.; Kardaras, G.; Berger, M.S.; Dittmann, L. Cloud RAN for Mobile Networks—A Technology Overview. IEEE Commun. Surv. Tutor. 2015, 17, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Gu, J.; Zeng, X.; Yan, C.; Gu, P. Delay-Aware Energy-Saving Strategies for BBU Pool in C-RAN: Modeling and Optimization. IEEE Access 2021, 9, 63257–63266. [Google Scholar] [CrossRef]
- Alimi, I.; Teixeira, A.; Monteiro, P. Toward an Efficient C-RAN Optical Fronthaul for the Future Networks: A Tutorial on Technologies, Requirements, Challenges, and Solutions. IEEE Commun. Surv. Tutor. 2018, 20, 708–769. [Google Scholar] [CrossRef]
- Aqeeli, E.; Moubayed, A.; Shami, A. Power-Aware Optimized RRH to BBU Allocation in C-RAN. IEEE Trans. Wirel. Commun. 2018, 17, 1311–1322. [Google Scholar] [CrossRef]
- Mohammedali, N.A.; Kanakis, T.; Agyeman, M.O.; Al-Sherbaz, A. A Survey of Mobility Management as a Service in Real-Time Inter/Intra Slice Control. IEEE Access 2021, 9, 62533–62552. [Google Scholar] [CrossRef]
- Mukhlif, F.; Noordin, K.; Mansoor, A.; Kasirun, Z. Green transmission for C-RAN based on SWIPT in 5G: A review. Wirel. Netw. 2019, 25, 2621–2649. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S. On the Fronthaul Statistical Multiplexing Gain. IEEE Commun. Lett. 2017, 21, 1099–1102. [Google Scholar] [CrossRef]
- Larsen, L.; Checko, A.; Christiansen, H. A Survey of the Functional Splits Proposed for 5G Mobile Crosshaul Networks. IEEE Commun. Surv. Tutor. 2019, 21, 146–172. [Google Scholar] [CrossRef] [Green Version]
- Ismail, T.; Mahmoud, H.H.M. Optimum Functional Splits for Optimizing Energy Consumption in V-RAN. IEEE Access 2020, 8, 194333–194341. [Google Scholar] [CrossRef]
- Touati, H.; Castel-Taleb, H.; Jouaber, B.; Akbarzadeh, S. Split analysis and fronthaul dimensioning in 5G C-RAN to guarantee ultra low latency. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Erazo-Agredo, C.C.; Garza-Fabre, M.; Calvo, R.A.; Diez, L.; Serrat, J.; Rubio-Loyola, J. Joint Route Selection and Split Level Management for 5G C-RAN. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4616–4638. [Google Scholar] [CrossRef]
- Ahmad, I.; Kumar, T.; Liyanage, M.; Okwuibe, J.; Ylianttila, M.; Gurtov, A. Overview of 5G Security Challenges and Solutions. IEEE Commun. Stand. Mag. 2018, 2, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Santoyo-González, A.; Cervelló-Pastor, C. Network-Aware Placement Optimization for Edge Computing Infrastructure under 5G. IEEE Access 2020, 8, 56015–56028. [Google Scholar] [CrossRef]
- Hossain, M.F.; Mahin, A.U.; Debnath, T.; Mosharrof, F.B.; Islam, K.Z. Recent research in cloud radio access network (C-RAN) for 5G cellular systems—A survey. J. Netw. Comput. Appl. 2019, 139, 31–48. [Google Scholar] [CrossRef]
- Taghizadeh, O.; Yang, T.; Mathar, R. Private Uplink Communication in C-RAN with Untrusted Radios. IEEE Trans. Veh. Technol. 2020, 69, 8034–8039. [Google Scholar] [CrossRef]
- Dai, B.; Yu, W. Energy Efficiency of Downlink Transmission Strategies for Cloud Radio Access Networks. IEEE J. Sel. Areas Commun. 2016, 34, 1037–1050. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiang, T.; Luo, K.; Mao, S. Green Heterogeneous Cloud Radio Access Networks: Potential Techniques, Performance Trade-offs, and Challenges. IEEE Commun. Mag. 2017, 55, 33–39. [Google Scholar] [CrossRef]
- Tian, B.; Zhang, Q.; Li, Y.; Tornatore, M. Joint Optimization of Survivability and Energy Efficiency in 5G C-RAN with mm-Wave Based RRH. IEEE Access 2020, 8, 100159–100171. [Google Scholar] [CrossRef]
- Masoudi, M.; Lisi, S.S.; Cavdar, C. Cost-Effective Migration Toward Virtualized C-RAN with Scalable Fronthaul Design. IEEE Syst. J. 2020, 14, 5100–5110. [Google Scholar] [CrossRef]
- Opadere, J.; Liu, Q.; Han, T.; Ansari, N. Energy-Efficient Virtual Radio Access Networks for Multi-Operators Cooperative Cellular Networks. IEEE Trans. Green Commun. Netw. 2019, 3, 603–614. [Google Scholar] [CrossRef]
- Kim, D.; Sung, K.W.; Koh, J.; Kang, J. On the benefit of inter-operator cooperation in C-RAN. IET Commun. 2021, 15, 191–199. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, S.; Gong, J.; Niu, Z.; Xu, S. On the statistical multiplexing gain of virtual base station pools. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; pp. 2283–2288. [Google Scholar] [CrossRef] [Green Version]
- Avramova, A.; Christiansen, H.; Iversen, V. Cell Deployment Optimization for Cloud Radio Access Networks using Teletraffic Theory. In Proceedings of the Fifth International Conference on Advanced Communications and Computation, Haryana, India, 21–22 February 2015; pp. 96–101. [Google Scholar]
- Checko, A.; Avramova, A.P.; Berger, M.S.; Christiansen, H.L. Evaluating C-RAN fronthaul functional splits in terms of network level energy and cost savings. J. Commun. Netw. 2016, 18, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhou, S.; Gong, J.; Niu, Z.; Xu, S. Statistical Multiplexing Gain Analysis of Heterogeneous Virtual Base Station Pools in Cloud Radio Access Networks. IEEE Trans. Wirel. Commun. 2016, 15, 5681–5694. [Google Scholar] [CrossRef] [Green Version]
- Chousainov, I.A.; Moscholios, I.; Sarigiannidis, P.; Kaloxylos, A.; Logothetis, M. An analytical framework of a C-RAN supporting random, quasi-random and bursty traffic. Comput. Netw. 2020, 180, 107410. [Google Scholar] [CrossRef]
- Chousainov, I.A.; Moscholios, I.D.; Sarigiannidis, P.G. Congestion Probabilities in a Multi-Cluster C-RAN Servicing a Mixture of Traffic Sources. Electronics 2020, 9, 2120. [Google Scholar] [CrossRef]
- Chousainov, I.A.; Moscholios, I.; Kaloxylos, A.; Logothetis, M. Performance Evaluation of a C-RAN Supporting Quasi-Random Traffic. In Proceedings of the 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 19–21 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Chousainov, I.A.; Moscholios, I.; Sarigiannidis, P.; Kaloxylos, A.; Logothetis, M. An Analytical Framework of a C-RAN Supporting Bursty Traffic. In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Stasiak, M.; Głąbowski, M.; Wisniewski, A.; Zwierzykowski, P. Modeling and Dimensioning of Mobile Networks: From GSM to LTE; John Wiley: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M. Efficient Multirate Teletraffic Loss Models beyond Erlang; JohnWiley & IEEE Press: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Chousainov, I.A.; Moscholios, I.; Kaloxylos, A.; Logothetis, M. Performance Evaluation in Single or Multi-Cluster C-RAN Supporting Quasi-Random Traffic. J. Commun. Softw. Syst. 2020, 16, 170–179. [Google Scholar] [CrossRef]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. Modelling overflow systems with distributed secondary resources. Comput. Netw. 2016, 108, 171–183. [Google Scholar] [CrossRef]
- Moscholios, I.D.; Vassilakis, V.G.; Logothetis, M.D.; Boucouvalas, A.C. State-Dependent Bandwidth Sharing Policies for Wireless Multirate Loss Networks. IEEE Trans. Wirel. Commun. 2017, 16, 5481–5497. [Google Scholar] [CrossRef] [Green Version]
- Vassilakis, V.; Moscholios, I.; Logothetis, M. Efficient radio resource allocation in SDN/NFV based mobile cellular networks under the complete sharing policy. IET Netw. 2018, 7, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Hanczewski, S.; Stasiak, M.; Weissenberg, J. Queueing model of a multi-service system with elastic and adaptive traffic. Comput. Netw. 2018, 147, 146–161. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Sagias, N.; Logothetis, M. On Channel Sharing Policies in LEO Mobile Satellite Systems. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1628–1640. [Google Scholar] [CrossRef] [Green Version]
- Panagoulias, P.; Moscholios, I. Congestion probabilities in the X2 link of LTE Networks. Telecommun. Syst. 2019, 17, 585–599. [Google Scholar] [CrossRef]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. A Palm-Jacobaeus Loss Formula for Multi-Service Systems with Separated Resources. Appl. Sci. 2020, 10, 4019. [Google Scholar] [CrossRef]
- Głąbowski, M.; Sobieraj, M.; Stasiak, M.; Dominik Stasiak, M. Modeling of Clos Switching Structures with Dynamically Variable Number of Active Switches in the Spine Stage. Electronics 2020, 9, 1073. [Google Scholar] [CrossRef]
- Panagoulias, P.; Moscholios, I.; Sarigiannidis, P.; Logothetis, M. Congestion probabilities in OFDM wireless networks with compound Poisson arrivals. IET Commun. 2020, 14, 674–681. [Google Scholar] [CrossRef]
- Głąbowski, M.; Leitgeb, E.; Sobieraj, M.; Stasiak, M. Analytical Modeling of Switching Fabrics of Elastic Optical Networks. IEEE Access 2020, 8, 193462–193477. [Google Scholar] [CrossRef]
- Głąbowski, M.; Kmiecik, D.; Stasiak, M. On Increasing the Accuracy of Modeling Multi-Service Overflow Systems with Erlang-Engset-Pascal Streams. Electronics 2021, 10, 508. [Google Scholar] [CrossRef]
- Chousainov, I.A.; Moscholios, I.D.; Sarigiannidis, P.; Logothetis, M.D. Multiservice Loss Models for Cloud Radio Access Networks. IEEE Access 2021, 9, 125109–125125. [Google Scholar] [CrossRef]
- Chousainov, I.A.; Moscholios, I.; Sarigiannidis, P.; Logothetis, M. Multiservice Loss Models in Single or Multi-Cluster C-RAN Supporting Quasi-Random Traffic. Appl. Sci. 2021, 11, 8559. [Google Scholar] [CrossRef]
- Mpantola, E.; Vardakas, J.; Louta, M. Performance evaluation of Cloud Radio Access Networks by jointly considering communicational and computational network resources. In Proceedings of the 2021 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Preveza, Greece, 24–26 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Kaufman, J. Blocking in a Shared Resource Environment. IEEE Trans. Commun. 1981, 29, 1474–1481. [Google Scholar] [CrossRef]
- Kaufman, J. Blocking in a completely shared resource environment with state dependent resource and residency requirements. In Proceedings of the IEEE INFOCOM ’92: The Conference on Computer Communications, Florence, Italy, 4–8 May 1992; Volume 3, pp. 2224–2232. [Google Scholar] [CrossRef]
- Moscholios, I.D.; Logothetis, M.D.; Kokkinakis, G.K. Connection-dependent threshold model: A generalization of the Erlang multiple rate loss model. Perform. Eval. 2002, 48, 177–200. [Google Scholar] [CrossRef]
- Vassilakis, V.G.; Moscholios, I.D.; Logothetis, M.D. The extended connection-dependent threshold model for call-level performance analysis of multi-rate loss systems under the bandwidth reservation policy. Int. J. Commun. Syst. 2012, 25, 849–873. [Google Scholar] [CrossRef]
- Moscholios, I.D.; Logothetis, M.D. The Erlang multirate loss model with Batched Poisson arrival processes under the bandwidth reservation policy. Comput. Commun. 2010, 33, S167–S179. [Google Scholar] [CrossRef]
- Vardakas, J.S. Electric vehicles charging management in communication controlled fast charging stations. In Proceedings of the 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Athens, Greece, 1–3 December 2014; pp. 115–119. [Google Scholar] [CrossRef]
- Li, W.; Kouvatsos, D.D.; Fretwell, R.J. Towards time domain invariant QoS measures for queues with correlated traffic. J. Comput. Syst. Sci. 2015, 81, 132–144. [Google Scholar] [CrossRef]
- Ezhilchelvan, P.; Mitrani, I. Multi-class Resource Sharing with Batch Arrivals and Complete Blocking. In Proceedings of the International Conference on Quantitative Evaluation of Systems, Berlin, Germany, 5–7 September 2017; Springer International Publishing: Cham, Switzerland, 2017; Volume 10503, pp. 157–169. [Google Scholar] [CrossRef] [Green Version]
- Escheikh, M.; Tayachi, Z.; Barkaoui, K. Performability evaluation of server virtualized systems under bursty workload. IFAC-PapersOnLine 2018, 51, 45–50. [Google Scholar] [CrossRef]
- Shahsavari, Y.; Shahhoseini, H.; Zhang, K.; Elbiaze, H. A Theoretical Model for Analysis of Firewalls under Bursty Traffic Flows. IEEE Access 2019, 7, 183311–183321. [Google Scholar] [CrossRef]
- Harrison, P. A semi-product-form for a pair of queues with finite batches: Equilibrium state probabilities and response time densities. Perform. Eval. 2020, 143, 102120. [Google Scholar] [CrossRef]
- Moscholios, I.D.; Vardakas, J.S.; Logothetis, M.D.; Boucouvalas, A.C. QoS guarantee in a batched poisson multirate loss model supporting elastic and adaptive traffic. In Proceedings of the International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 1281–1286. [Google Scholar] [CrossRef]
- Moscholios, I.D.; Logothetis, M.D.; Boucouvalas, A.C. Blocking probabilities of elastic and adaptive calls in the Erlang multirate loss model under the threshold policy. Telecommun. Syst. 2016, 62, 245–262. [Google Scholar] [CrossRef]
- Hanczewski, S.; Stasiak, M.; Weissenberg, J. A Model of a System With Stream and Elastic Traffic. IEEE Access 2021, 9, 7789–7796. [Google Scholar] [CrossRef]
- Stamatelos, G.; Koukoulidis, V. Reservation-based bandwidth allocation in a radio ATM network. IEEE/ACM Trans. Netw. 1997, 5, 420–428. [Google Scholar] [CrossRef]
RRH; RRUs; CRUs. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-th RRH () | 1st (3) | 2nd (2) | 3rd (2) | 4th (2) | 5th (1) | 6th (1) | |||||
service-class, s | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 |
band requirements (RUs), | 1 | 2 | 3 | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chousainov, I.-A.; Moscholios, I.; Sarigiannidis, P.; Logothetis, M. Multiservice Loss Models in C-RAN Supporting Compound Poisson Traffic. Electronics 2022, 11, 773. https://doi.org/10.3390/electronics11050773
Chousainov I-A, Moscholios I, Sarigiannidis P, Logothetis M. Multiservice Loss Models in C-RAN Supporting Compound Poisson Traffic. Electronics. 2022; 11(5):773. https://doi.org/10.3390/electronics11050773
Chicago/Turabian StyleChousainov, Iskanter-Alexandros, Ioannis Moscholios, Panagiotis Sarigiannidis, and Michael Logothetis. 2022. "Multiservice Loss Models in C-RAN Supporting Compound Poisson Traffic" Electronics 11, no. 5: 773. https://doi.org/10.3390/electronics11050773
APA StyleChousainov, I.-A., Moscholios, I., Sarigiannidis, P., & Logothetis, M. (2022). Multiservice Loss Models in C-RAN Supporting Compound Poisson Traffic. Electronics, 11(5), 773. https://doi.org/10.3390/electronics11050773