A Lightweight and Practical Anonymous Authentication Protocol Based on Bit-Self-Test PUF
Abstract
:1. Introduction
2. Related Work
2.1. Analysis and Comparison of Lightweight HDAs
2.2. Analysis and Comparison of PUF-Based Protocols
3. Proposed Scheme
3.1. Lightweight Helper Data Algorithms
3.2. Proposed Authentication Protocol
- : A is a set, and is a randomly selected element from ;
- y = A(x): is a probabilistic algorithm and is the output produced by inputting to algorithm ;
- TRNG: Truly random number generator, which can derive a truly random number sequence;
- PRF, PRF: Pseudorandom function uses the secret key and the message as input, an output ;
- KEY.Ext: , uses challenge as input, generates a key and helper data . The contains a - circuit, which is described in Section 3.1;
- KEY.Rec: , takes as input the PUF noisy response and helper data and recovers the key .
4. Formal Security Analysis
4.1. Probable Security Threats and Prospective Attacks
4.2. Security Analysis
- Transmit : After A receives from S, A sends message to S and receives message from S;
- Enquiry : A sends to the device, receives from the device, and then sends to the device;
- Execute : When executing a protocol between D and S, A needs to intercept this channel;
- Blocking : A is required to block a part of the protocol and interrupt the synchronization between D and S;
- Reveal : This query simulates the ability of the adversary to compromise the device and obtain confidential information stored in its memory.
5. Implementation and Analysis
5.1. Implementation and Performance Evaluation of the BST-PUF
5.2. Implementation and Analysis of the Protocol
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aghili, S.F.; Ashouri-Talouki, M.; Mala, H. DoS, impersonation and de-synchronization attacks against an ultra-lightweight RFID mutual authentication protocol for IoT. J. Supercomput. 2018, 74, 509. [Google Scholar] [CrossRef]
- Juels, A. RFID security and privacy: A research survey. IEEE J. Sel. Areas Commun. 2006, 24, 381. [Google Scholar] [CrossRef]
- Madlmayr, G.; Langer, J.; Kantner, C.; Scharinger, J. NFC devices: Security and privacy. In Proceedings of the 2008 Third IEEE International Conference on Availability, Reliability and Security, Barcelona, Spain, 4–7 March 2008; p. 642. [Google Scholar] [CrossRef]
- Suh, G.E.; Devadas, S. Physical unclonable functions for device authentication and secret key generation. In Proceedings of the 2007 44th ACM/IEEE Design Automation Conference (DAC), San Diego, CA, USA, 4–8 June 2007; p. 9. [Google Scholar]
- Kong, J.; Koushanfar, F.; Pendyala, P.K.; Sadeghi, A.R.; Wachsmann, C. PUFatt: Embedded platform attestation based on novel processor-based PUFs. In Proceedings of the 2014 51st ACM/EDAC/IEEE (DAC), San Francisco, CA, USA, 1–5 June 2014; p. 1. [Google Scholar] [CrossRef]
- Majzoobi, M.; Rostami, M.; Koushanfar, F.; Wallach, D.S.; Devadas, S. Slender PUF protocol: A lightweight, robust, and secure authentication by substring matching. In Proceedings of the 2012 IEEE Symposium on Security and Privacy Workshops, San Francisco, CA, USA, 24–25 May 2012; p. 33. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.D.; Hiller, M.; Delvaux, J.; Sowell, R.; Devadas, S.; Verbauwhede, I. A lockdown technique to prevent machine learning on PUFs for lightweight authentication. IEEE Trans. Multi-Scale Comput. Syst. 2016, 2, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Zhang, J.; Zhou, Q.; Gong, S.; Qian, X.; Tang, B. Crossover ring oscillator PUF. In Proceedings of the 2017 18th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 14–15 March 2017; p. 237. [Google Scholar] [CrossRef]
- Gope, P.; Hwang, T. Untraceable Sensor Movement in Distributed IoT Infrastructure. IEEE Sens. J. 2015, 15, 5340. [Google Scholar] [CrossRef]
- Sahoo, D.P.; Nguyen, P.H.; Mukhopadhyay, D.; Chakraborty, R.S. A case of lightweight PUF constructions: Cryptanalysis and machine learning attacks. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2015, 34, 1334. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Kundu, S. A novel modeling attack resistant PUF design based on non-linear voltage transfer characteristics. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2015; p. 653. [Google Scholar] [CrossRef]
- Maes, R. Physically Unclonable Functions. In Properties; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Lim, D.; Lee, J.W.; Gassend, B.; Suh, G.E.; Van Dijk, M.; Devadas, S. Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2005, 13, 1200–1205. [Google Scholar]
- Chatterjee, U.; Govindan, V.; Sadhukhan, R.; Mukhopadhyay, D.; Chakraborty, R.S.; Mahata, D.; Prabhu, M.M. Building PUF based Authentication and Key Exchange Protocol for IoT without Explicit CRPs in Verifier Database. IEEE Trans. Dependable Secur. Comput. 2019, 16, 424. [Google Scholar] [CrossRef]
- Bhargava, M.; Cakir, C.; Mai, K. Reliability enhancement of bi-stable PUFs in 65nm bulk CMOS. In Proceedings of the 2012 IEEE International Symposium on Hardware-Oriented Security and Trust, San Francisco, CA, USA, 3–4 June 2012; p. 25. [Google Scholar] [CrossRef]
- Beckmann, K.; Manem, H.; Cady, N.C. Performance Enhancement of a Time-Delay PUF Design by Utilizing Integrated Nanoscale ReRAM Devices. IEEE Trans. Emerg. Top. Comput. 2017, 5, 304. [Google Scholar] [CrossRef]
- Dodis, Y.; Reyzin, L.; Smith, A. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2004; p. 523. [Google Scholar]
- Yu, M.D.; Devadas, S. Secure and Robust Error Correction for Physical Unclonable Functions. IEEE Des. Test Comput. 2010, 27, 48. [Google Scholar] [CrossRef]
- Paral, Z.; Devadas, S. Reliable and efficient PUF-based key generation using pattern matching. In Proceedings of the 2011 IEEE International Symposium on Hardware-Oriented Security and Trust, San Diego, CA, USA, 5–6 June 2011; pp. 128–133. [Google Scholar]
- Becker, G.T.; Wild, A.; Güneysu, T. Security analysis of index-based syndrome coding for PUF-based key generation. In Proceedings of the 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Washington, DC, USA, 5–7 May 2015; pp. 20–25. [Google Scholar]
- Suzuki, M.; Ueno, R.; Homma, N.; Aoki, T. Efficient fuzzy extractors based on ternary debiasing method for biased physically unclonable functions. IEEE Trans. Circuits Syst. 2018, 66, 616. [Google Scholar] [CrossRef]
- Maes, R.; Herrewege, A.V.; Verbauwhede, I. PUFKY: A fully functional PUF-based cryptographic key generator. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2012; p. 302. [Google Scholar] [CrossRef] [Green Version]
- Ueno, R.; Suzuki, M.; Homma, N. Tackling Biased PUFs Through Biased Masking: A Debiasing Method for Efficient Fuzzy Extractor. IEEE Trans. Comput. 2019, 68, 1091–1104. [Google Scholar] [CrossRef]
- Lao, Y.; Yuan, B.; Kim, C.H.; Parhi, K.K. Reliable PUF-Based Local Authentication With SelfCorrection. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2017, 36, 201. [Google Scholar] [CrossRef]
- Zhang, J.; Wan, L.; Wu, Q.; Dmos-Puf, G. Dynamic multi-key-selection obfuscation for strong PUFs against machine learning attacks. arXiv 2018, arXiv:1806.02011. [Google Scholar]
- Gope, P.; Sikdar, B. Privacy-Aware Authenticated Key Agreement Scheme for Secure Smart Grid Communication. IEEE Trans. Smart Grid 2018, 10, 3953–3962. [Google Scholar] [CrossRef]
- He, Z.; Chen, W.; Zhang, L.; Chi, G.; Gao, Q.; Harn, L. A Highly Reliable Arbiter PUF With Improved Uniqueness in FPGA Implementation Using Bit-Self-Test. IEEE Access 2020, 8, 181751. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Munir, A. PUF-RAKE: A PUF-based Robust and Lightweight Authentication and Key Establishment Protocol. IEEE Trans. Dependable Secur. Comput. 2021. [Google Scholar] [CrossRef]
- Becker, G.T. On the Pitfalls of Using Arbiter-PUFs as Building Blocks. IEEE Trans. Comput. Dependable Integr. Circuits Syst. 2015, 34, 1295–1307. [Google Scholar] [CrossRef]
- Delvaux, J. Machine Learning Attacks on PolyPUF, OB-PUF, RPUF, and PUF-FSM. IEEE Trans. Inf. Forensics Secur. 2017, 14, 2043–2058. [Google Scholar] [CrossRef] [Green Version]
- Aysu, A.; Gulcan, E.; Moriyama, D.; Schaumont, P.; Yung, M. End-to-end design of a PUF- based privacy preserving authentication protocol. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2015; p. 556. [Google Scholar] [CrossRef]
- Beaulieu, R.; Treatman-Clark, S.; Shors, D.; Weeks, B.; Smith, J.; Wingers, L. The SIMON and SPECK lightweight block ciphers. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 8–12 June 2015. [Google Scholar]
- Gope, P.; Lee, J.; Quek, T.Q. Lightweight and Practical Anonymous Authentication Protocol for RFID Systems Using Physically Unclonable Functions. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2831–2843. [Google Scholar] [CrossRef]
- Braeken, A. PUF based authentication protocol for IoT. Symmetry 2018, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Urbi Chatterjee, Rajat Subhra Chakraborty, and Debdeep Mukhopadhyay. A PUF-Based Secure Communication Protocol for IoT. ACM Trans. Embed. Comput. Syst. 2017, 16, 67. [Google Scholar] [CrossRef]
- Koeberl, P.; Li, J.; Rajan, A.; Wu, W. Entropy loss in PUF-based key generation schemes: The repetition code pitfall. In Proceedings of the IEEE International Symposium on Hardware-Oriented Security & Trust, Arlington, VA, USA, 6–7 May 2014. [Google Scholar]
- Darwish, O.; Al-Fuqaha, A.; Anan, M.; Nasser, N. The role of hierarchical entropy analysis in the detection and time-scale determination of covert timing channels. In Proceedings of the 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, 24–28 August 2015; pp. 153–159. [Google Scholar] [CrossRef]
- Darwish, O.; Al-Fuqaha, A.; Brahim, G.B.; Javed, M.A. Using MapReduce and hierarchical entropy analysis to speed-up the detection of covert timing channels. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 1102–1107. [Google Scholar] [CrossRef]
- Bogdanov, A.; Knežević, M.; Leander, G.; Toz, D.; Varıcı, K.; Verbauwhede, I. SPONGENT: A lightweight hash function. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2011; p. 312. [Google Scholar]
- Majzoobi, M.; Koushanfar, F.; Devadas, S. FPGA-based true random number generation using circuit metastability with adaptive feedback control. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2011; p. 17. [Google Scholar] [CrossRef] [Green Version]
- Che, W.; Martin, M.; Pocklassery, G.; Kajuluri, V.K.; Saqib, F.; Plusquellic, J. A privacy-preserving, mutual PUF-based authentication protocol. Cryptography 2017, 1, 3. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, F. Optimal adaptive filtering algorithm by using the fractional-order derivative. IEEE Signal Process Lett. 2022, 29, 399–403. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Ding, F. Modeling nonlinear processes using the radial basis function-based state-dependent autoregressive models. IEEE Signal Process Lett. 2020, 27, 1600–1604. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Zhang, X.; Ding, F. Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data length. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3597–3601. [Google Scholar] [CrossRef]
Module | LUTs | Registers |
---|---|---|
PUF | 150 | 47 |
KEY.E/R | 241 | 165 |
TRNG | 128 | 12 |
PRF | 267 | 154 |
Controller | 84 | 169 |
Total | 870 | 547 |
Protocols | LUT | Registers |
---|---|---|
Majzoobi [6] | 656 | 537 |
Chatterjee [14] | 1591 | 1933 |
Che [41] | 6038 | 1724 |
Proposed work | 870 | 547 |
Protocols | SP1 | SP2 | SP3 | SP4 | SP5 | SP6 | SP7 |
---|---|---|---|---|---|---|---|
Majzoobi [6] | ✗ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ |
Chatterjee [14] | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ |
Che [41] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Proposed work | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Step | Implementation Module | Clock Cycles |
---|---|---|
Read , , | Read ROM | 33,394 |
; | Programmable logic (PL) | 8426 |
; | Key. Ext/Rec Model and BST-APUF | 16,439 |
; | SIMON PRF/PRF’(128-bit) | 375,866 |
Update , , | Write ROM | 75,788 |
Total | – | 509,913 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Y.; Zhang, Y.; Cao, W.; Tong, Z.; He, Z. A Lightweight and Practical Anonymous Authentication Protocol Based on Bit-Self-Test PUF. Electronics 2022, 11, 772. https://doi.org/10.3390/electronics11050772
An Y, Zhang Y, Cao W, Tong Z, He Z. A Lightweight and Practical Anonymous Authentication Protocol Based on Bit-Self-Test PUF. Electronics. 2022; 11(5):772. https://doi.org/10.3390/electronics11050772
Chicago/Turabian StyleAn, Yang, Yuejiao Zhang, Wenjun Cao, Zhiyan Tong, and Zhangqing He. 2022. "A Lightweight and Practical Anonymous Authentication Protocol Based on Bit-Self-Test PUF" Electronics 11, no. 5: 772. https://doi.org/10.3390/electronics11050772
APA StyleAn, Y., Zhang, Y., Cao, W., Tong, Z., & He, Z. (2022). A Lightweight and Practical Anonymous Authentication Protocol Based on Bit-Self-Test PUF. Electronics, 11(5), 772. https://doi.org/10.3390/electronics11050772