A Hybrid Method for the Fault Diagnosis of Onboard Traction Transformers
Abstract
:1. Introduction
2. KPCA
- (1)
- Sample data matrix Xk for input fault characteristic quantity of traction transformer. Through kernel function, data samples are mapped to φ(Xk), The nuclear moment matrix, K, is calculated first, followed by the matrix K′.
- (2)
- The eigenvalue of matrix K′/l is λi (i = 1,2,…,l) and the eigenvector is vi (i = 1,2,…,l)
- (3)
- The m eigenvalues in λi and their corresponding eigenvector vm are extracted according to a cumulative contribution rate of 90%. Finally, the dimension reduction matrix Y is obtained.
3. Basic Theory of SVM
4. ISOA
4.1. SOA
- (1)
- Migratory Behavior
- Avoiding collisions
- The direction of movement towards the best neighbor
- The direction of movement towards the best neighbor
- (2)
- Foraging Behavior
4.2. Henon Mapping
4.3. Differential Evolution Algorithm
- Variation
- Crossover
- Choice
4.4. Adaptive DE Algorithm
4.5. ADE SOA
4.6. Introduction to Optimization Process of ISOA
- 1.
- Firstly, Henon chaos initialization is used to replace the original population initialization.
- 2.
- Secondly, the combination of ADE and SOA is used to improve the attack formula of SOA.
- 3.
- Finally, the ISOA optimization model is established to optimize the parameters of the SVM.
Algorithm 1 ISOA pseudo-code | |
Input: seagull population | |
Output: seagull optimal position | |
1: | Initialize population size M, dimension D, the maximum number of iterations Tmax; |
Initialize , u, v, k, A, B; | |
3: | Randomly generate M seagulls in the space by Equation (17); |
4: | Calculate the population fitness and find the optimal individual |
5: | while do |
6: | Calculate new seagull position by Equations (10), (12) and (14); |
7: | Compute using Equation (15); |
8: | Calculate by Equation (16); |
9: | Initialize variation factor F by Equation (21); |
10: | Combined differential evolution by Equations (22)–(24) and get the next generation of seagull population; |
11: | Update seagull optimal position ; |
12: | ; |
13: | end while |
14: | Return . |
5. Improved Seagull Optimization Algorithm
6. Establishment of Traction Transformer Fault Diagnosis Model Based on KPCA-ISOA-SVM
6.1. Data Preprocessing
6.2. Fault Data Processing Based on KPCA
6.3. Established Optimization Model
- step 1.
- The fault data are divided into the training set and verification set, and the fault data are processed by the KPCA principal component.
- step 2.
- Initialize SOA parameters. Initialize the population size and set parameters such as iteration times, dimension, and parameter optimization boundary.
- step 3.
- Population initialization. The population is initialized by Henon chaotic map, and the population fitness value, x, is calculated.
- step 4.
- Migration behavior. The seagull optimization algorithm performs migration according to Equations (10)–(14), and the seagull population performs global optimization.
- step 5.
- Aggressive behavior. The seagull optimization algorithm carries out the attack behavior according to Equation (16) to obtain the current best individual position of the seagull.
- step 6.
- Update the intermediate population. According to Equations (18) and (19), the original seagull population is mutated and crossed to obtain the position of the individual of the intermediate population.
- step 7.
- Population selection. The selection operation is carried out through Equation (24), and the next-generation seagull population is selected and updated from the populations obtained in step 5 and step 6.
- step 8.
- Judge the termination conditions. If the termination conditions are met, input the obtained optimal parameters C and σ to SVM; Otherwise, go to step 3.
6.4. Fault Diagnosis
7. Fault Diagnosis of Traction Transformer Based on KPCA-ISOA-SVM
8. Conclusions
- 1.
- Compared with the ISOA-SVM, GWO-SVM, SOA-SVM, and KPCA-ISOA-SVM greatly improved the diagnosis accuracy and speed, which effectively proves that the traction transformer fault data processed by KPCA is more suitable for fault diagnosis.
- 2.
- ISOA, SOA, GWO, and PSO tests were carried out. It was seen that ISOA greatly improved the optimization performance and convergence speed, which reflects the effectiveness of the improvement of ISOA.
- 3.
- Due to the special working environment of the traction transformer, there may be a little deviation in the fault state diagnosed only for the fault data. The combination of the fault diagnosis with more parameters can achieve better results.
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Wu, G.; Li, X.; Yang, Y.; Hu, G.; Gao, B.; Zhang, W.; Wang, Z. Research Progress of Fault Prediction and Health Management for Onboard Traction Transformers. High Volt. Eng. 2020, 46, 145–158. [Google Scholar]
- Liu, J.; Fan, X.; Zheng, H.; Zhang, Y.; Zhang, C.; Lai, B.; Wang, J.; Ren, G.; Zhang, E. Aging condition assessment of transformer oil-immersed cellulosic insulation based upon the average activation energy method. Cellulose 2019, 26, 3891–3908. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, J.; Li, W.; Wu, Z.; Gao, S.; Guo, L.; Liu, H. FRA modelling for diagnosing axial displacement of windings in traction transformers. IET Electr. Power Appl. 2019, 13, 2121–2127. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, H.; Zhang, Y.; Zhou, T.; Zhao, J.; Li, J.; Liu, J.; Li, J. Comparative Investigation on the Performance of Modified System Poles and Traditional System Poles Obtained from PDC Data for Diagnosing the Ageing Condition of Transformer Polymer Insulation Materials. Polymers 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Chen, T.; Fu, Q. New research on intelligent fault diagnosis technology of onboard traction transformer. Comput. Eng. Appl. 2012, 48, 27–31. [Google Scholar]
- Zeng, B.; Guo, J.; Zhu, W.; Xiao, Z.; Yuan, F.; Huang, S. A Transformer Fault Diagnosis Model Based on Hybrid Grey Wolf Optimizer and LS-SVM. Energies 2019, 12, 4170. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Sun, X.; Zhang, Y.; Zhong, X.; Cheng, L. A Power Transformer Fault Diagnosis Method-Based Hybrid Improved Seagull Optimization Algorithm and Support Vector Machine. IEEE Access 2021, 10, 17268–17286. [Google Scholar] [CrossRef]
- Guo, C.; Wang, B.; Wu, Z.; Ren, M.; He, Y.; Albarracín, R.; Dong, M. Transformer Failure Diagnosis Using Fuzzy Association Rule Mining Combined with Case-Based Reasoning. IET Gener. Transm. Distrib. 2020, 14, 2202–2208. [Google Scholar] [CrossRef]
- Fei, X.; Zhijiang, L.; Hao, Z.; Daogang, P.; Qian, Z.; Yiwen, T. Application of mixed neural network in transformer fault diagnosis. J. Electron. Meas. Instrum. 2017, 31, 118. [Google Scholar]
- Illias, H.A.; Chai, X.R.; Bakar, A.H.A. Hybrid modified evolutionary particle swarm optimization-time varying acceleration coefficient-artificial neural network for power transformer fault diagnosis. Measurement 2016, 90, 94–102. [Google Scholar] [CrossRef]
- Li, A.; Yang, X.; Xie, Z.; Yang, C. An optimized GRNN-enabled approach for power transformer fault diagnosis. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 1181–1188. [Google Scholar] [CrossRef]
- Teng, W.; Fan, S.; Gong, Z.; Jiang, W.; Gong, M. Fault diagnosis of transformer based on fuzzy clustering and the optimized wavelet neural network. Syst. Sci. Control Eng. 2018, 6, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, X.; Zheng, H.; Yao, H.; Liu, J.; Zhang, C.; Peng, H.; Jiao, J. A Fault Diagnosis Model of Power Transformers Based on Dissolved Gas Analysis Features Selection and Improved Krill Herd Algorithm Optimized Support Vector Machine. IEEE Access 2019, 7, 102803–102811. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, X.; Dai, B.; Yang, P.; Wang, Z. A transformer fault diagnosis methodbased on hybrid improved grey wolf optimization andleast squares-support vector machine. IET Gener. Transm. Distrib. 2022, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, H.; Liao, R.; Wang, Y.; Yang, L.; Yan, C. A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers. J. Electr. Eng. Technol. 2017, 12, 830–839. [Google Scholar] [CrossRef] [Green Version]
- Kari, T.; Gao, W.; Zhao, D.; Abiderexiti, K.; Mo, W.; Wang, Y.; Luan, L. Hybrid feature selection approach for power transformer fault diagnosis based on support vector machine and genetic algorithm. IET Gener. Transm. Distrib. 2018, 12, 5672–5680. [Google Scholar] [CrossRef]
- Zhang, J.J.; Liang, Y.S.; Yin, Y.J.; Guo, C.X. Transformers fault diagnosis based on fuzzy theory and support vector machine. J. Electr. Power Sci. Technol. 2011, 26, 61–66. [Google Scholar]
- Mani, G.; Jerome, J. Intuitionistic Fuzzy Expert System based Fault Diagnosis using Dissolved Gas Analysis for Power Transformer. J. Electr. Eng. Technol. 2014, 9, 2058–2064. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Pan, W.; Guo, X.; Bi, S.; Feng, D.; Lin, S. Fault Diagnosis of Traction Transformer Based on Bayesian Network. Energies 2020, 13, 4966. [Google Scholar] [CrossRef]
- Fu, Q.; Chen, T.F.; Zhu, J.J. Research on Traction Transformer Faults Diagnosis Algorithm Based on HPSO-WNN. J. China Railw. Soc. 2012, 34, 26–32. [Google Scholar]
- Dai, C.; Liu, Z.; Hu, K.; Huang, K. Fault diagnosis approach of traction transformers in high-speed railway combining kernel principal component analysis with random forest. IET Electr. Syst. Transp. 2016, 6, 202–206. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, J.; Wang, L.; Yuan, S.; Huang, L.; Wang, D.; Guo, L. A Method for Hot-Spot Temperature Prediction and Thermal Capacity Estimation for Traction Transformers in High-Speed Railway Based on Genetic Programming. IEEE Trans. Transp. Electrif. 2019, 5, 1319–1328. [Google Scholar] [CrossRef]
- Orosz, T.; Rassõlkin, A.; Kallaste, A.; Arsénio, P.; Pánek, D.; Kaska, J.; Karban, P. Robust Design Optimization and Emerging Technologies for Electrical Machines: Challenges and Open Problems. Appl. Sci. 2020, 10, 6653. [Google Scholar] [CrossRef]
- Liang, Y.; Gao, Z.; Gao, J.; Xu, G.; Wang, R. The instrument fault detection and identification based on kernel principal component analysis and coupling analysis in process industry. Trans. Inst. Meas. Control 2021, 43, 1531–1544. [Google Scholar] [CrossRef]
- Chen, B.; Huang, D.; Zhang, F. The Modeling Method of a Vibrating Screen Efficiency Prediction Based on KPCA and LS-SVM. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 1950009. [Google Scholar] [CrossRef]
- Pan, M.; Li, C.; Gao, R.; Huang, Y.; You, H.; Gu, T.; Qin, F. Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization. J. Clean. Prod. 2020, 277, 123948. [Google Scholar] [CrossRef]
- Fan, J.; Wang, F.; Sun, Q.; Bin, F.; Liang, F.; Xiao, X. Hybrid RVM-ANFIS algorithm for transformer fault diagnosis. IET Gener. Transm. Distrib. 2017, 11, 3637–3643. [Google Scholar] [CrossRef]
- Dudzik, W.; Nalepa, J.; Kawulok, M. Evolving data-adaptive support vector machines for binary classification. Knowl. Based Syst. 2021, 227, 107221. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 2018, 165, 169–196. [Google Scholar] [CrossRef]
- Ehteram, M.; Banadkooki, F.B.; Fai, C.M.; Moslemzadeh, M.; Sapitang, M.; Ahmed, A.N.; Irwan, D.; El-Shafie, A. Optimal operation of multi-reservoir systems for increasing power generation using a seagull optimization algorithm and heading policy. Energy Rep. 2021, 7, 3703–3725. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Zhang, Y.; Ye, X.; Xiong, X.; Zhang, F. A Novel Hybrid Model Based on an Improved Seagull Optimization Algorithm for Short-Term Wind Speed Forecasting. Processes 2021, 9, 387. [Google Scholar] [CrossRef]
- Zhuo, X.; Bi, M.; Hu, Z.; Li, H.; Wang, X.; Yang, X. Secure scheme for OFDM-PON system using TR based on modified Henon chaos. Opt. Commun. 2020, 462, 125304. [Google Scholar] [CrossRef]
- Karaboğa, D.; Ökdem, S. A Simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm. Turk. J. Electr. Eng. Comput. Sci. 2004, 12, 53–60. [Google Scholar]
- Zeng, Z.; Zhang, M.; Chen, T.; Hong, Z. A new selection operator for differential evolution algorithm. Knowl. Based Syst. 2021, 226, 107150. [Google Scholar] [CrossRef]
- Dixit, A.; Mani, A.; Bansal, R. An adaptive mutation strategy for differential evolution algorithm based on particle swarm optimization. Evol. Intell. 2021, 1–15. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, S.; Yang, H.; Lei, Z. SCJADE: Yet Another State-of-the-Art Differential Evolution Algorithm. IEEJ Trans. Electr. Electron. Eng. 2021, 16, 644–646. [Google Scholar] [CrossRef]
Function | Dim | Range | fmin |
---|---|---|---|
30 | [−100,100] | 0 | |
30 | [−600,600] | 0 | |
30 | [−5.12,5.12] | 0 | |
4 | [−5,5] | 0.00030 |
No. | Function | Dim | |
---|---|---|---|
1 | Shifted and Rotated Bent Cigar | 30 | 100 |
2 | Shifted and Rotated Rastrigin’s Function | 30 | 500 |
3 | Shifted and Rotated Schwefel’s Function | 30 | 1000 |
4 | Hybrid Function 5 Bent Cigar Function HGBat Function Rastrigin’s Function Rosenbrock’s Function | 30 | 1500 |
5 | Hybrid Function 10 Happycat Function Katsuura Function Ackley’s Function Rastrigin’s Function Modified Schwefel’s Function Schaffer’s F7 Function | 30 | 2000 |
6 | Composition Function 10 Hybrid Function 5 Hybrid Function 8 Hybrid Function 9 | 30 | 3000 |
F/Function | F1 | F2 | F3 | F4 | |
---|---|---|---|---|---|
GWO | Mean | 9.39 × 10−20 | 2.95 × 10−03 | 5.202 | 5.60 × 10−03 |
Best | 8.52 × 10−21 | 1.13 × 10−02 | 9.06 × 10−11 | 6.08 × 10−04 | |
Vari | 6.33 × 10−41 | 3.21 × 10−05 | 2.98 × 10+01 | 9.69 × 10−05 | |
PSO | Mean | 1.03 × 10−09 | 1.35 × 10−02 | 5.87 × 10+01 | 8.67 × 10−04 |
Best | 9.11 × 10−09 | 9.86 × 10−03 | 4.89 × 10+01 | 5.72 × 10−04 | |
Vari | 3.58 × 10−16 | 1.01 × 10−05 | 1.00 × 10+02 | 5.89 × 10−08 | |
WOA | Mean | 5.17 × 10−24 | 0 | 0 | 8.91 × 10−4 |
Best | 1.93 × 10−27 | 0 | 0 | 3.08 × 10−4 | |
Vari | 8.47 × 10−49 | 0 | 0 | 7.59 × 10−10 | |
SOA | Mean | 9.17 × 10−14 | 1.37 × 10−15 | 4.32 × 10−13 | 1.23 × 10−03 |
Best | 3.31 × 10−15 | 9.17 × 10−15 | 6.25 × 10−13 | 1.24 × 10−03 | |
Vari | 9.51 × 10−30 | 8.13 × 10−31 | 4.62 × 10−26 | 7.53 × 10−09 | |
ISOA | Mean | 0 | 0 | 0 | 3.07 × 10−04 |
Best | 0 | 0 | 0 | 3.05 × 10−04 | |
Vari | 0 | 0 | 0 | 2.30 × 10−13 |
Function | GWO | PSO | WOA | SOA | ISOA |
---|---|---|---|---|---|
1 | 5.9871 × 10+3 | 9.9751 × 10+3 | 1.2171 × 10+2 | 1.4751 × 10+2 | 1.0386 × 10+2 |
2 | 5.1397 × 10+2 | 5.1324 × 10+2 | 5.0994 × 10+2 | 5.1896 × 10+2 | 5.0295 × 10 +2 |
3 | 1.4443 × 10+3 | 1.5943 × 10+3 | 1.0607 × 10+3 | 1.7874 × 10+3 | 1.0328 × 10+3 |
4 | 1.9183 × 10+3 | 2.1010 × 10+3 | 1.5431 × 10+3 | 1.6388 × 10+3 | 1.5194 × 10+3 |
5 | 2.0191 × 10+3 | 2.0378 × 10+3 | 2.0147 × 10+3 | 2.0373 × 10+3 | 2.0003 × 10+3 |
6 | 9.1945 × 10+4 | 2.8998 × 10+5 | 7.8183 × 10+4 | 3.5159 × 10+6 | 3.3917 × 10+3 |
Code | Fault Type |
---|---|
1 | Normal |
2 | Inter turn short circuit |
3 | Inter-layer short circuit |
4 | Inter-strand short circuit |
5 | Winding partial discharge |
6 | Winding deformation |
Fault Type | 1 | 2 | 3 | 4 | 5 | 6 | Total |
---|---|---|---|---|---|---|---|
Total | 39 | 27 | 18 | 15 | 15 | 21 | 135 |
Training set | 26 | 18 | 12 | 10 | 10 | 14 | 90 |
Test set | 13 | 9 | 6 | 5 | 5 | 7 | 45 |
Diagnostic | GWO-SVM | SOA-SVM | ISOA-SVM | KPCA-ISOA-SVM |
---|---|---|---|---|
Speed (s) | 115 | 104 | 87 | 41 |
Fault Type | GWO-SVM | SOA-SVM | ISOA-SVM | KPCA-ISOA-SVM |
---|---|---|---|---|
1 | 92.31% (12/13) | 100% (13/13) | 100% (13/13) | 100% (13/13) |
2 | 100% (9/9) | 77.78% (7/9) | 100% (9/9) | 88.89% (8/9) |
3 | 66.67% (4/6) | 50% (3/6) | 100% (6/6) | 100% (6/6) |
4 | 60% (3/5) | 100% (5/5) | 20% (1/5) | 80% (4/5) |
5 | 40% (2/5) | 80% (4/5) | 80% (4/5) | 80% (4/5) |
6 | 71.43% (5/7) | 57.14% (4/7) | 71.43% (5/7) | 85.71% (6/7) |
Total | 77.78% (35/45) | 80% (36/45) | 84.44% (38/45) | 91.11% (41/45) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Li, S.; Liu, Y.; Dong, H. A Hybrid Method for the Fault Diagnosis of Onboard Traction Transformers. Electronics 2022, 11, 762. https://doi.org/10.3390/electronics11050762
Zhu J, Li S, Liu Y, Dong H. A Hybrid Method for the Fault Diagnosis of Onboard Traction Transformers. Electronics. 2022; 11(5):762. https://doi.org/10.3390/electronics11050762
Chicago/Turabian StyleZhu, Junmin, Shuaibing Li, Yang Liu, and Haiying Dong. 2022. "A Hybrid Method for the Fault Diagnosis of Onboard Traction Transformers" Electronics 11, no. 5: 762. https://doi.org/10.3390/electronics11050762
APA StyleZhu, J., Li, S., Liu, Y., & Dong, H. (2022). A Hybrid Method for the Fault Diagnosis of Onboard Traction Transformers. Electronics, 11(5), 762. https://doi.org/10.3390/electronics11050762