A 320 μW Multi-Band Receiver with N-Path Switched-Capacitor Networks
Abstract
:1. Introduction
2. ULP Receiver with NPSC Networks
2.1. LNA with an NPSC Network
2.2. NPSC Mixer
2.3. Divider
3. Measurement Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ULP | Ultra-low power |
NPSC | N-path switched-capacitor |
LNA | Low noise amplifier |
IoT | Internet of Things |
LPTV | Linear periodically time-variant |
FoM | Figure of merit |
References
- Wang, K.; Qiu, L.; Koo, J.; Ruby, R.; Otis, B. Design of 1.8-mW PLL-Free 2.4-GHz Receiver Utilizing Temperature-Compensated FBAR Resonator. IEEE J. Solid-State Circuits 2018, 53, 1628–1639. [Google Scholar] [CrossRef]
- Park, B.; Kwon, K. 2.4-GHz Bluetooth Low Energy Receiver Employing New Quadrature Low-Noise Amplifier for Low-Power Low-Voltage IoT Applications. IEEE Trans. Microw. Theory Tech. 2021, 69, 1887–1895. [Google Scholar] [CrossRef]
- Tamura, M.; Takano, H.; Shinke, S.; Fujita, H.; Nakahara, H.; Suzuki, N.; Nakada, Y.; Shinohe, Y.; Etou, S.; Katayama, Y.; et al. 30.5 A 0.5 V BLE Transceiver with a 1.9 mW RX Achieving 96.4 dBm Sensitivity and 4.1 dB Adjacent Channel Rejection at 1 MHz Offset in 22 nm FDSOI. In Proceedings of the 2020 IEEE International Solid- State Circuits Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 468–470. [Google Scholar]
- Barzgari, M.; Ghafari, A.; Meghdadi, M.; Medi, A. A Current Re-Use Quadrature RF Receiver Front-End for Low Power Applications: Blixator Circuit. IEEE J. Solid-State Circuits 2022, 57, 2672–2684. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, H.; Huang, H.; Tang, D.; Xu, D.; Kaneko, T.; Li, Z.; Pang, J.; Wu, R.; Okada, K.; et al. A 0.85 mm2 BLE Transceiver Using an On-Chip Harmonic-Suppressed RFIO Circuitry With T/R Switch. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 196–209. [Google Scholar] [CrossRef]
- Lei, K.; Mak, P.; Law, M.; Martins, R.P. A regulation-free sub-0.5 V 16/24 MHz crystal oscillator for energy-harvesting BLE radios with 14.2 nJ startup energy and 31.8 pW steady-state power. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 52–54. [Google Scholar]
- Lin, L.; Jain, S.; Alioto, M. Integrated Power Management for Battery-Indifferent Systems With Ultra-Wide Adaptation Down to nW. IEEE J. Solid-State Circuits 2020, 55, 967–976. [Google Scholar] [CrossRef]
- Liu, L.; Xing, Y.; Huang, W.; Liao, X.; Li, Y. A 10 mV–500 mV Input Range, 91.4% Peak Efficiency Adaptive Multi-Mode Boost Converter for Thermoelectric Energy Harvesting. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 609–619. [Google Scholar] [CrossRef]
- Liu, Z.; Tan, Y.; Li, H.; Jiang, H.; Liu, J.; Liao, H. A 0.5-V 3.69-nW Complementary Source-Follower-C Based Low-Pass Filter for Wearable Biomedical Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4370–4381. [Google Scholar] [CrossRef]
- Tamura, M.; Takano, H.; Nakahara, H.; Fujita, H.; Arisaka, N.; Shinke, S.; Suzuki, N.; Nakada, Y.; Nakada, Y.; Shinohe, Y.; et al. A 0.5 V BLE Transceiver With a 1.9-mW RX Achieving 96.4 dBm Sensitivity and 27 dBm Tolerance for Intermodulation From Interferers at 6 and 12 MHz Offsets. IEEE J. Solid-State Circuits 2020, 55, 3376–3386. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, K.; Koo, J.; Miyahara, Y.; Otis, B. A 1.6 mW 300 mV supply 2.4 GHz receiver with 94 dBm sensitivity for energy-harvesting applications. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 456–457. [Google Scholar]
- Im, J.; Breiholz, J.; Li, S.; Calhoun, B.; Wenzloff, D.D. A Fully Integrated 0.2 V 802.11 ba Wake-Up Receiver with −91.5 dBm Sensitivity. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Los Angeles, CA, USA, 4–6 August 2020; pp. 339–342. [Google Scholar]
- Yi, H.; Yu, W.; Mak, P.; Yin, J.; Martins, R.P. A 0.18 V 382 μW Bluetooth Low-Energy Receiver Front-End With 1.33 nW Sleep Power for Energy-Harvesting Applications in 28 nm CMOS. IEEE J. Solid-State Circuits 2018, 53, 1618–1627. [Google Scholar] [CrossRef]
- Tan, G.H.; Ramiah, H.; Mak, P.-I.; Martins, R.P. A 0.35 V 520 μW 2.4 GHz Current-Bleeding Mixer With Inductive-Gate and Forward-Body Bias, Achieving >13 dB Conversion Gain and >55 dB Port-to-Port Isolation. IEEE Trans. Microw. Theory Tech. 2017, 65, 1284–1293. [Google Scholar] [CrossRef]
- Elsayed, O.; Abouzied, M.; Vaidya, V.; Ravichandran, K.; Sánchez-Sinencio, E. An Ultralow-Power RF Wireless Receiver With RF Blocker Energy Recycling for IoT Applications. IEEE Trans. Microw. Theory Tech. 2018, 66, 4927–4942. [Google Scholar] [CrossRef]
- Wang, P.H.P.; Mercier, P.P. An Interference-Resilient BLE-Compatible Wake-Up Receiver Employing Single-Die Multi-Channel FBAR-Based Filtering and a 4-D Wake-Up Signature. IEEE J. Solid-State Circuits 2021, 56, 416–426. [Google Scholar] [CrossRef]
- Ye, D.; Xu, R.; Shi, C.-J.R. A Nonlinear Receiver Leveraging Cascaded Inverter-Based Envelope-Biased LNAs for In-Band Interference Suppression in the Amplitude Domain. IEEE J. Solid-State Circuits 2021, 56, 3360–3374. [Google Scholar] [CrossRef]
- Han, G.; Kinget, P.R. Double-Conversion, Noise-Cancelling Receivers Using Modulated LNTAs and Double-Layer Passive Mixers for Concurrent Signal Reception With Tuned RF Interface. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3913–3926. [Google Scholar] [CrossRef]
- Bhat, A.N.; van der Zee, R.A.R.; Nauta, B. A Baseband-Matching-Resistor Noise-Canceling Receiver With a Three-Stage Inverter-Only OpAmp for High In-Band IIP3 and Wide IF Applications. IEEE J. Solid-State Circuits 2021, 56, 1994–2006. [Google Scholar] [CrossRef]
- Purushothaman, V.K.; Klumperink, E.A.M.; Clavera, B.T.; Nauta, B. A Fully Passive RF Front End with 13 dB Gain Exploiting Implicit Capacitive Stacking in a Bottom-Plate N-Path Filter/Mixer. IEEE J. Solid-State Circuits 2020, 55, 1139–1150. [Google Scholar] [CrossRef] [Green Version]
- Khorshidian, M.; Krishnaswamy, H. 26.7 An Impedance-Transforming N-Path Filter Offering Passive Voltage Gain. In Proceedings of the 2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; pp. 365–367. [Google Scholar]
- von Grunigen, D.C.; Sigg, R.P.; Schmid, J.; Moschytz, G.S.; Melchior, H. An integrated CMOS switched-capacitor bandpass filter based on N-path and frequency-sampling principles. IEEE J. Solid-State Circuits 1983, 18, 753–761. [Google Scholar] [CrossRef]
- Lin, Z.; Mak, P.-I.; Martins, R.P. A Sub-GHz Multi-ISM-Band ZigBee Receiver Using Function-Reuse and Gain-Boosted N-Path Techniques for IoT Applications. IEEE J. Solid-State Circuits 2014, 49, 2990–3004. [Google Scholar] [CrossRef]
- Agrawal, A.; Natarajan, A. An Interferer-Tolerant CMOS Code-Domain Receiver Based on N-Path Filters. IEEE J. Solid-State Circuits 2018, 53, 1387–1397. [Google Scholar] [CrossRef]
- Zolkov, E.; Ginzberg, N.; Cohen, E. A 1–2 GHz Quadrature Balanced N-Path Receiver for Frequency Division Duplex Systems. IEEE Trans. Microw. Theory Tech. 2022, 70, 597–610. [Google Scholar] [CrossRef]
- Lee, D.; Kwon, K. CMOS Channel-Selection LNA with a Feedforward N-Path Filter and Calibrated Blocker Cancellation Path for FEM-Less Cellular Transceivers. IEEE Trans. Microw. Theory Tech. 2022, 70, 1810–1820. [Google Scholar] [CrossRef]
- Ying, R.; Molnar, A. Impedance Transparency and Performance Metrics of HBT-Based N-Path Mixers for mmWave Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 2210–2223. [Google Scholar] [CrossRef]
- Salazar, C.; Cathelin, A.; Kaiser, A.; Rabaey, J. A 2.4 GHz Interferer-Resilient Wake-Up Receiver Using A Dual-IF Multi-Stage N-Path Architecture. IEEE J. Solid-State Circuits 2016, 51, 2091–2105. [Google Scholar] [CrossRef]
- Lin, F.; Mak, P.; Martins, R. 3.9 An RF-to-BB current-reuse wideband receiver with parallel N-path active/passive mixers and a single-MOS pole-zero LPF. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 74–75. [Google Scholar]
- Klumperink, E.A.M.; Westerveld, H.J.; Nauta, B. N-path filters and mixer-first receivers: A review. In Proceedings of the 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 30 April 2017–3 May 2017; pp. 1–8. [Google Scholar]
- Bialek, H.; Binaie, A.; Ahasan, S.; Sadagopan, K.R.; Johnston, M.L.; Krishnaswamy, H.; Natarajan, A. A Passive Wideband Noise-Canceling Mixer-First Architecture With Shared Antenna Interface for Interferer-Tolerant Wake-Up Receivers and Low-Noise Primary Receivers. IEEE J. Solid-State Circuits 2022, 57, 2611–2625. [Google Scholar] [CrossRef]
- Ghaffari, A.; Klumperink, E.A.M.; Soer, M.C.M.; Nauta, B. Tunable High-Q N-Path Band-Pass Filters: Modeling and Verification. IEEE J. Solid-State Circuits 2011, 46, 998–1010. [Google Scholar] [CrossRef] [Green Version]
- Hameed, S.; Pamarti, S. Impedance Matching and Reradiation in LPTV Receiver Front-Ends: An Analysis Using Conversion Matrices. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2842–2855. [Google Scholar] [CrossRef]
- Zolkov, E.; Cohen, E. Analysis and Modeling of N-Path Circuits Peak Frequency Shift Caused by Switch Parasitics. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 374–378. [Google Scholar] [CrossRef]
- Zolkov, E.; Cohen, E. Analysis of the Effect of Switch Parasitic Resistance and Capacitance on N-Path Filters Using State Space Representation. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1889–1893. [Google Scholar] [CrossRef]
- Reiskarimian, N.; Khorshidian, M.; Krishnaswamy, H. Inductorless, Widely Tunable N-Path Shekel Circulators Based on Harmonic Engineering. IEEE J. Solid-State Circuits 2021, 56, 1425–1437. [Google Scholar] [CrossRef]
- Lin, Z.; Mak, P.; Martins, R.P. Analysis and Modeling of a Gain-Boosted N-Path Switched-Capacitor Bandpass Filter. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 2560–2568. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Maksimovic, F.; Iotti, L.; Niknejad, A.M. Analysis and Design of Submilliwatt Interference-Tolerant Receivers Leveraging N-Path Filter-Based Translational Positive Feedback. IEEE Trans. Microw. Theory Tech. 2021, 69, 3496–3509. [Google Scholar] [CrossRef]
- Lee, S.; Choi, I.; Kim, H.; Kim, B. A Sub-mW Fully Integrated Wide-Band Receiver for Wireless Sensor Network. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 319–321. [Google Scholar] [CrossRef]
- Zhiqun, L.; Yao, Y.; Zengqi, W.; Guoxiao, C.; Luo, L. A 1V 1.4 mW multi-band ZigBee receiver with 64 dB SFDR. Microelectron. J. 2018, 76, 43–51. [Google Scholar]
- Kargaran, E.; Bryant, C.; Manstretta, D.; Strange, J.; Castello, R. A Sub 0.6 V, 330 μW, 0.15 mm2 Receiver Front-End for Bluetooth Low Energy (BLE) in 22 nm FD-SOI with Zero External Components. In Proceedings of the 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), Macau, China, 4–6 November 2019; pp. 169–172. [Google Scholar]
- Rekhi, A.S.; Arbabian, A. 14.5 mm2 8 nW −59.7 dBm-sensitivity ultrasonic wake-up receiver for power-, area-, and interference-constrained applications. In Proceedings of the 2018 IEEE International Solid State Circuits Conference (ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 454–456. [Google Scholar]
Block | Power Consumption | Power Contribution |
---|---|---|
LNA | 134 W | 42% |
IF amplifier | 134 W | 42% |
Divider | 52 W | 16% |
Total | 320 W | 100% |
Reference | [1] | [38] | [39] | [40] | [41] | This Work |
---|---|---|---|---|---|---|
Tech./nm | 65 | 28 | 28 | 180 | 22 | 90 |
Freq./MHz | 2400 | 2200–2400 | 850–2550 | 780/868/915 | 2400 | 430/860/915/960 |
Power/W | 860 | 580 | 530–970 | 1420 | 330 | 320 |
VDD/V | 1 | 1 | 0.8 | 1 | 0.55 | 0.4 |
Gain/dB | 57.8 | 19–42 | 55 | 45.9 | 32.3 | |
NF/dB | 15.7 | 11.6 | 13.6 | 8.5 | 9.4 | |
OB-IIP3/dBm | −13.4 | 3.3 | −7.5 | −33.5 1 | −8 | |
Area/mm | 0.45 | – | 0.17 | 1.41 | 0.15 | 0.31 |
Sensitivity/dBm | −88.3 | −96.4 | −90.4 | −102 | −89.6 | |
FoM/dB2 | 86.6 | – | 76.4–81.6 | 82.5 | 72.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, L.; Han, F.; Liu, Z.; Qi, Q.; Wang, X.; Wang, W. A 320 μW Multi-Band Receiver with N-Path Switched-Capacitor Networks. Electronics 2022, 11, 4111. https://doi.org/10.3390/electronics11244111
Lei L, Han F, Liu Z, Qi Q, Wang X, Wang W. A 320 μW Multi-Band Receiver with N-Path Switched-Capacitor Networks. Electronics. 2022; 11(24):4111. https://doi.org/10.3390/electronics11244111
Chicago/Turabian StyleLei, Lei, Fang Han, Zicheng Liu, Quanwen Qi, Xinghua Wang, and Weijiang Wang. 2022. "A 320 μW Multi-Band Receiver with N-Path Switched-Capacitor Networks" Electronics 11, no. 24: 4111. https://doi.org/10.3390/electronics11244111
APA StyleLei, L., Han, F., Liu, Z., Qi, Q., Wang, X., & Wang, W. (2022). A 320 μW Multi-Band Receiver with N-Path Switched-Capacitor Networks. Electronics, 11(24), 4111. https://doi.org/10.3390/electronics11244111