Advanced HEVC Screen Content Coding for MPEG Immersive Video
Abstract
:1. Introduction
- The quarter-pel accuracy in Intra Block Copy (IBC) technique (earlier presented in [9], but in the context of multiview video compression, not in immersive video),
- The use of tiles to allow inter-view prediction inside MIV atlases,
- Adding the MIV bitstream parser in the HEVC encoder allows selecting the most efficient coding configuration depending on the type of currently encoded data (e.g., different configurations for textures and depth maps).
2. Related Works
3. Proposed Modifications of Screen Content Coding
3.1. Quarter-Pel Accuracy of Intra Block Copy
3.2. Tile-Based Intra Block Copy
3.3. Parsing of MIV Bitstream
4. Methodology of the Experiments
5. Experimental Results
5.1. Quarter-Pel IBC Accuracy
5.2. QPel + Tile-Based IBC Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vadakital, V.K.M.; Dziembowski, A.; Lafruit, G.; Thudor, F.; Lee, G.; Rondao Alface, P. The MPEG immersive video standard—current status and future outlook. IEEE MultiMed. 2022, 23, 101–111. [Google Scholar] [CrossRef]
- Boyce, J.; Doré, R.; Dziembowski, A.; Fleureau, J.; Jung, J.; Kroon, B.; Salahieh, B.; Vadakital, V.K.M.; Yu, L. MPEG Immersive Video coding standard. Proc. IEEE 2021, 109, 1521–1536. [Google Scholar] [CrossRef]
- Sullivan, G.J.; Ohm, J.; Han, W.J.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Szekiełda, J.; Dziembowski, A.; Mieloch, D. The Influence of Coding Tools on Immersive Video Coding. In Proceedings of the 29th International Conference on Computer Graphics, Visualization and Computer Vision WSCG, Online, 17–20 May 2021. [Google Scholar] [CrossRef]
- Common Test Conditions for MPEG Immersive Video. Standardization document: ISO/IEC JTC1/SC29/WG04 MPEG VC N0051, Online. January 2021. Available online: https://mpeg.chiariglione.org/standards/mpeg-i/immersive-video/common-test-conditions-immersive-video-2 (accessed on 20 October 2022).
- Xu, X.; Liu, S. Overview of Screen Content Coding in Recently Developed Video Coding Standards. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 839–852. [Google Scholar] [CrossRef]
- Xu, J.; Joshi, R.; Cohen, R.A. Overview of the Emerging HEVC Screen Content Coding Extension. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Samelak, J.; Dziembowski, A.; Mieloch, D.; Domański, M.; Wawrzyniak, M. Efficient Immersive Video Compression using Screen Content Coding. In Proceedings of the 29th International Conference on Computer Graphics, Visualization and Computer Vision WSCG, Prague, Czech Republic, 17–20 May 2021. [Google Scholar] [CrossRef]
- Samelak, J.; Domański, M. Multiview Video Compression Using Advanced HEVC Screen Content Coding. arXiv 2021, arXiv:2106.13574. [Google Scholar] [CrossRef]
- Mieloch, D.; Dziembowski, A.; Domański, M.; Lee, G.; Jeong, J.Y. Color-dependent pruning in immersive video coding. J. WSCG 2022, 30, 91–98. [Google Scholar] [CrossRef]
- Shin, H.C.; Jeong, J.Y.; Lee, G.; Kakli, M.U.; Yun, J.; Seo, J. Enhanced pruning algorithm for improving visual quality in MPEG immersive video. ETRI J. 2022, 44, 73–84. [Google Scholar] [CrossRef]
- Kim, H.H.; Lim, S.G.; Lee, G.; Jeong, J.Y.; Kim, J.G. Efficient Patch Merging for Atlas Construction in 3DoF+ Video Coding. IEICE Trans Inf. Syst. 2021, 3, 477–480. [Google Scholar] [CrossRef]
- Park, D.; Lim, S.G.; Oh, K.J.; Lee, G.; Kim, J.G. Nonlinear Depth Quantization Using Piecewise Linear Scaling for Immersive Video Coding. IEEE Access 2022, 10, 4483–4494. [Google Scholar] [CrossRef]
- Dziembowski, A.; Mieloch, D.; Domański, M.; Lee, G.; Jeong, J.Y. Spatiotemporal redundancy removal in immersive video coding. J. WSCG 2022, 30, 54–62. [Google Scholar] [CrossRef]
- Salahieh, B.; Bhatia, S.; Boyce, J. Multi-Pass Renderer in MPEG Test Model for Immersive Video. In 2019 Picture Coding Symposium (PCS); IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Fachada, S.; Bonatto, D.; Xie, Y.; Rondao Alface, P.; Teratani, M.; Lafruit, G. Depth Image-Based Rendering of Non-Lambertian Content in MPEG Immersive Video. In Proceedings of the 2021 International Conference on 3D Immersion (IC3D), Brussels, Belgium, 8 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Garus, P.; Henry, F.; Jung, J.; Maugey, T.; Guillemot, C. Immersive Video Coding: Should Geometry Information Be Transmitted as Depth Maps? IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 3250–3264. [Google Scholar] [CrossRef]
- Standard ISO/IEC DIS 23090-12; Information Technology—Coded Representation of Immersive Media—Part 12: MPEG Immersive Video. Available online: https://www.iso.org/standard/79113.html (accessed on 20 October 2022).
- Szydełko, B.; Dziembowski, A.; Mieloch, D.; Domański, M.; Lee, G. Recursive block splitting in feature-driven decoder-side depth estimation. ETRI J. 2022, 44, 38–50. [Google Scholar] [CrossRef]
- Garus, P.; Henry, F.; Maugey, T.; Guillemot, C. Decoder Side Multiplane Images using Geometry Assistance SEI for MPEG Immersive Video. In Proceedings of the MMSP 2022—IEEE 24th International Workshop on Multimedia Signal Processing, Shanghai, China, 26–28 September 2022; pp. 1–6. [Google Scholar]
- Garus, P.; Henry, F.; Maugey, T.; Guillemot, C. Motion Compensation-based Low-Complexity Decoder Side Depth Estimation for MPEG Immersive Video. In Proceedings of the MMSP 2022—IEEE 24th International Workshop on Multimedia Signal Processing, Shanghai, China, 26–28 September 2022; pp. 1–6. [Google Scholar]
- Milovanović, M.; Henry, F.; Cagnazzo, M.; Jung, J. Patch Decoder-Side Depth Estimation in Mpeg Immersive Video. In Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, ON, Canada, 6–11 June 2021; pp. 1945–1949. [Google Scholar] [CrossRef]
- Chen, M.; Salahieh, B.; Dmitrichenko, M.; Boyce, J. Simplified carriage of MPEG immersive video in HEVC bitstream. In Applications of Digital Image Processing XLIV; SPIE: Bellingham, WA, USA, 2021. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, J.B.; Ryu, E.S. Atlas level rate distortion optimization for 6DoF immersive video compression. In Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital Audio and Video, Athlone, Ireland, 17 June 2022; pp. 78–84. [Google Scholar] [CrossRef]
- Jeong, J.B.; Lee, S.; Ryu, E.S. Delta QP Allocation for MPEG Immersive Video. In Proceedings of the 13th International Conference on ICT Convergence, Jeju, Korea, 19–21 October 2022. [Google Scholar]
- Santamaria, M.; Vadakital, V.K.M.; Kondrad, Ł.; Hallapuro, A.; Hannuksela, M.M. Coding of volumetric content with MIV using VVC subpictures. In Proceedings of the IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 6–8 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Jeong, J.B.; Lee, S.; Ryu, E.S. VVC Subpicture-Based Frame Packing for MPEG Immersive Video. IEEE Access 2022, 10, 103781–103792. [Google Scholar] [CrossRef]
- Tsang, S.; Chan, Y.; Kuang, W. Standard-Compliant HEVC Screen Content Coding for Raw Light Field Image Coding. In Proceedings of the 13th International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, Australia, 16–18 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Samelak, J.; Stankowski, J.; Domański, M. Efficient frame-compatible stereoscopic video coding using HEVC Screen Content Coding. In Proceedings of the IEEE International Conference on Systems, Signals and Image Processing IWSSIP 2017, Poznań, Poland, 22–24 May 2017. [Google Scholar] [CrossRef]
- Samelak, J.; Domański, M. Unified Screen Content and Multiview Video Coding—Experimental results. Standardization document: Joint Video Exploration Team (JVET) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 13th Meeting: Doc. JVET-M0765, Marrakech, MA. January 2019. Available online: http://multimedia.edu.pl/publications/m46343-Unified-Screen-Content-and-Multiview-Video-Coding---Experimental-results.pdf (accessed on 20 October 2022).
- Xu, X.; Liu, S.; Chuang, T.D.; Huang, Y.W.; Lei, S.M.; Rapaka, K.; Pang, C.; Seregin, V.; Wang, Y.-K.; Karczewicz, M. Intra Block Copy in HEVC Screen Content Coding Extensions. IEEE J. Emerg. Sel. Top. Circuits Syst. 2016, 6, 409–419. [Google Scholar] [CrossRef]
- Tech, G.; Chen, Y.; Müller, K.; Ohm, J.R.; Vetro, A.; Wang, Y.K. Overview of the Multiview and 3D Extensions of High Efficiency Video Coding. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 35–49. [Google Scholar] [CrossRef] [Green Version]
- JCT-VC, HEVC Screen Content Coding Reference Software Repository. Available online: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.9+SCM-8.0 (accessed on 19 September 2022).
- Sun, Y.; Lu, A.; Yu, L. Weighted-to-Spherically-Uniform Quality Evaluation for Omnidirectional Video. IEEE Signal Process. Lett. 2017, 24, 1408–1412. [Google Scholar] [CrossRef]
- Dziembowski, A.; Mieloch, D.; Stankowski, J.; Grzelka, A. IV-PSNR—The objective quality metric for immersive video applications. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7575–7591. [Google Scholar] [CrossRef]
- Bjøntegaard, G. Calculation of Average PSNR Differences between RD-curves. Standardization document: ITU-T SG16, Doc. VCEG-M33, Austin, USA. April 2001. Available online: https://www.itu.int/wftp3/av-arch/video-site/0104_Aus/VCEG-M33.doc (accessed on 20 October 2022).
- Test Model 8 for MPEG Immersive Video. Standardization document: ISO/IEC JTC1/SC29/WG04 MPEG VC N0050, Online. January 2021. Available online: https://mpeg.chiariglione.org/standards/mpeg-i/versatile-video-coding/test-model-8-versatile-video-coding-vtm-8 (accessed on 20 October 2022).
Sequence | BD-Rate WS-PSNRY | BD-Rate IV-PSNR | ΔEncoding Time |
---|---|---|---|
ClassroomVideo | −0.3% | 0.7% | 107.2% |
Museum | −0.6% | 0.9% | 108.7% |
Fan | −0.3% | 0.5% | 103.7% |
Kitchen | −0.1% | −0.2% | 106.3% |
Chess | −0.5% | −1.3% | 104.3% |
Group | −0.6% | 0.5% | 108.0% |
ChessPieces | −1.0% | −3.0% | 108.3% |
Hijack | −0.1% | −0.5% | 113.2% |
Mirror | −0.5% | 0.0% | 101.5% |
CG: average | −0.0% | −0.3% | 106.8% |
Painter | −1.6% | −1.9% | 110.4% |
Frog | −0.1% | −0.0% | 107.5% |
Carpark | −1.3% | −1.4% | 108.7% |
Fencing | −2.0% | −2.4% | 107.2% |
Hall | −6.0% | −7.3% | 106.2% |
Street | −2.9% | −3.1% | 108.6% |
NC: average | −2.3% | −2.7% | 108.1% |
All: average | −0.9% | −1.2% | 107.3% |
Seq. | Rate | Texture Bitrate [Mbps] | Depth Bitrate [Mbps] | IV-PSNR [dB] | |||||
---|---|---|---|---|---|---|---|---|---|
FPel | QPel | Δ | FPel | QPel | Δ | FPel | QPel | ||
CG | R1 | 58.95 | 58.38 | −1% | 7.38 | 7.35 | 0% | 44.31 | 44.31 |
R2 | 15.81 | 15.72 | −1% | 5.39 | 5.37 | 0% | 43.04 | 43.05 | |
R3 | 5.01 | 5.07 | 1% | 3.72 | 3.71 | 0% | 40.89 | 40.90 | |
R4 | 1.65 | 1.66 | 1% | 2.78 | 2.78 | 0% | 38.14 | 38.14 | |
NC | R1 | 79.46 | 79.02 | −1% | 31.07 | 28.95 | −7% | 45.41 | 45.42 |
R2 | 16.59 | 16.53 | 0% | 13.81 | 12.74 | −8% | 43.92 | 43.93 | |
R3 | 5.42 | 5.51 | 2% | 6.19 | 5.90 | −5% | 41.76 | 41.75 | |
R4 | 2.02 | 2.04 | 1% | 3.76 | 3.69 | −2% | 38.46 | 38.47 |
Sequence | QPel Accuracy for Depth, FPel for Texture | FPel Accuracy for Depth, QPel for Texture | ||||
---|---|---|---|---|---|---|
BD-Rate WS-PSNRY | BD-Rate IV-PSNR | ΔEncoding Time | BD-Rate WS-PSNRY | BD-Rate IV-PSNR | ΔEncoding Time | |
ClassroomVideo | −0.2% | −0.2% | 100.8% | −0.1% | 0.9% | 107.0% |
Museum | −0.0% | −0.1% | 100.3% | 0.6% | 1.0% | 108.3% |
Fan | 0.3% | 0.2% | 99.1% | −0.0% | 0.3% | 102.7% |
Kitchen | −0.1% | −0.3% | 97.2% | 0.2% | 0.0% | 105.9% |
Chess | −0.1% | −0.1% | 97.6% | −0.4% | −1.1% | 103.7% |
Group | 0.4% | 0.2% | 101.9% | 0.3% | 0.3% | 107.4% |
ChessPieces | −1.0% | −1.5% | 99.8% | −0.0% | −1.5% | 107.8% |
Hijack | 0.1% | −0.2% | 100.9% | −0.2% | −0.4% | 112.0% |
Mirror | −0.2% | −0.2% | 99.4% | 0.7% | 0.3% | 101.1% |
CG: average | −0.1% | −0.2% | 99.7% | 0.1% | −0.0% | 106.2% |
Painter | −1.3% | −1.3% | 100.4% | −0.3% | −0.6% | 108.9% |
Frog | −0.5% | −1.0% | 101.1% | 0.6% | 1.0% | 106.9% |
Carpark | −1.5% | −1.7% | 103.2% | 0.2% | 0.3% | 107.8% |
Fencing | −1.9% | −2.5% | 100.8% | −0.0% | 0.0% | 106.3% |
Hall | −6.3% | −7.1% | 101.3% | 0.4% | −0.2% | 105.9% |
Street | −4.5% | −4.6% | 100.6% | 1.5% | 1.5% | 108.2% |
NC: average | −2.7% | −3.0% | 101.2% | 0.4% | 0.3% | 107.3% |
All: average | −1.1% | −1.4% | 100.3% | 0.2% | 0.1% | 106.6% |
Sequence | BD-Rate WS-PSNRY | BD-Rate IV-PSNR | ΔEncoding Time |
---|---|---|---|
ClassroomVideo | 2.6% | −5.2% | 54.4% |
Museum | 1.3% | 2.1% | 78.5% |
Fan | 0.7% | 1.4% | 80.7% |
Kitchen | 1.6% | 2.8% | 90.4% |
Chess | 0.3% | −0.5% | 90.6% |
Group | 0.8% | 0.3% | 77.1% |
ChessPieces | −0.6% | −2.4% | 93.5% |
Hijack | 0.6% | 1.4% | 113.0% |
Mirror | 2.4% | 2.8% | 91.4% |
CG: average | 1.1% | 0.3% | 85.5% |
Painter | −2.3% | −4.2% | 95.7% |
Frog | −0.7% | −5.6% | 75.8% |
Carpark | −6.1% | −8.2% | 76.0% |
Fencing | −1.5% | −3.5% | 82.5% |
Hall | −6.7% | −7.7% | 90.7% |
Street | −10.5% | −12.3% | 76.8% |
NC: average | −4.6% | −6.9% | 82.9% |
All: average | −1.2% | −2.6% | 84.5% |
Sequence | Tile-Based IBC Analysis for both Texture Atlases | Tile-based IBC analysis for all atlases | ||||
---|---|---|---|---|---|---|
BD-Rate WS-PSNRY | BD-Rate IV-PSNR | ΔEncoding Time | BD-Rate WS-PSNRY | BD-Rate IV-PSNR | ΔEncoding Time | |
ClassroomVideo | 3.7% | −4.5% | 39.7% | 9.0% | −1.8% | 41.6% |
Museum | 2.2% | 2.9% | 47.3% | 4.4% | 4.7% | 50.9% |
Fan | 1.6% | 2.5% | 51.8% | 6.4% | 6.8% | 43.6% |
Kitchen | 3.8% | 4.9% | 57.6% | 8.4% | 8.7% | 63.4% |
Chess | 2.1% | 0.9% | 56.6% | 7.4% | 5.3% | 60.4% |
Group | 1.7% | 1.1% | 46.0% | 6.9% | 4.5% | 45.2% |
ChessPieces | 1.4% | 0.4% | 56.1% | 7.7% | 4.9% | 59.7% |
Hijack | 1.8% | 2.8% | 58.0% | 8.5% | 8.9% | 53.7% |
Mirror | 4.3% | 4.6% | 55.8% | 7.0% | 7.1% | 54.0% |
CG: average | 2.5% | 1.7% | 52.1% | 7.3% | 5.5% | 52.5% |
Painter | −1.9% | −4.0% | 52.7% | 2.0% | −0.2% | 39.0% |
Frog | −0.1% | −5.6% | 44.4% | 3.3% | −2.6% | 33.7% |
Carpark | −5.6% | −7.9% | 63.8% | −2.6% | −5.1% | 55.7% |
Fencing | −0.7% | −3.0% | 54.0% | 4.6% | 1.9% | 44.8% |
Hall | −6.3% | −7.2% | 71.8% | 3.5% | 2.5% | 54.0% |
Street | −10% | −12% | 66.3% | −6.2% | −8.0% | 58.4% |
NC: average | −4.1% | −6.6% | 58.8% | 0.8% | −1.9% | 47.6% |
All: average | −0.1% | −1.6% | 54.8% | 4.7% | 2.5% | 50.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samelak, J.; Dziembowski, A.; Mieloch, D. Advanced HEVC Screen Content Coding for MPEG Immersive Video. Electronics 2022, 11, 4040. https://doi.org/10.3390/electronics11234040
Samelak J, Dziembowski A, Mieloch D. Advanced HEVC Screen Content Coding for MPEG Immersive Video. Electronics. 2022; 11(23):4040. https://doi.org/10.3390/electronics11234040
Chicago/Turabian StyleSamelak, Jarosław, Adrian Dziembowski, and Dawid Mieloch. 2022. "Advanced HEVC Screen Content Coding for MPEG Immersive Video" Electronics 11, no. 23: 4040. https://doi.org/10.3390/electronics11234040
APA StyleSamelak, J., Dziembowski, A., & Mieloch, D. (2022). Advanced HEVC Screen Content Coding for MPEG Immersive Video. Electronics, 11(23), 4040. https://doi.org/10.3390/electronics11234040