Self-Decoupled MIMO Antenna Realized by Adjusting the Feeding Positions
Abstract
1. Introduction
2. Proposed Design
2.1. A. Radiation Modes and Decoupling Mechanism
2.2. B. Simulation Verification
3. Experimental Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jensen, M.A.; Wallace, J.W. A review of antennas and propagation for MIMO wireless communications. IEEE Trans. Antennas Propag. 2004, 52, 2810–2824. [Google Scholar] [CrossRef]
- Wallace, J.; Jensen, M. Mutual coupling in MIMO wireless systems: A rigorous network theory analysis. IEEE Trans. Wirel. Commun. 2004, 3, 1317–1325. [Google Scholar] [CrossRef]
- Li, M.; Jiang, L.; Yeung, K.L. Novel and efficient parasitic decoupling network for closely coupled antennas. IEEE Trans. Antennas Propag. 2019, 67, 3574–3585. [Google Scholar] [CrossRef]
- Xia, R.L.; Qu, S.W.; Li, P.F.; Jiang, Q.; Nie, Z.P. An efficient decoupling feeding network for microstrip antenna array. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 871–874. [Google Scholar] [CrossRef]
- Farahani, H.S.; Veysi, M.; Kamyab, M.; Tadjalli, A. Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 57–59. [Google Scholar] [CrossRef]
- Iglesias, E.R.; Teruel, O.Q.; Sanchez, L.I. Planar soft surface and their application to mutual coupling reduction. IEEE Trans. Antennas Propag. 2009, 57, 3852–3859. [Google Scholar] [CrossRef]
- Ghosh, J.; Mitra, D.; Das, S. Mutual coupling reduction of slot antenna array by controlling surface wave propagation. IEEE Trans. Antennas Propag. 2019, 67, 1352–1357. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Z. A wideband printed dual-antenna with three neutralization lines for mobile terminals. IEEE Trans. Antennas Propag. 2014, 62, 1495–1500. [Google Scholar] [CrossRef]
- Chen, X.M.; Tang, M.C.; Yi, D.; Ziolkowski, R.W. Wideband, compact antennas with interdigitated magnetic-based near-field resonant parasitic elements. IEEE Trans. Antennas Propag. 2021, 69, 5036–5041. [Google Scholar] [CrossRef]
- Lin, H.W.; Chen, Q.G.; Ji, Y.; Yang, X.J.; Wang, J.P.; Ge, L. Weak-field-based self-decoupling patch antennas. IEEE Trans. Antennas Propag. 2020, 68, 4208–4217. [Google Scholar] [CrossRef]
- Sun, L.B.; Li, Y.; Zhang, Z.J. Decoupling between extremely closely spaced patch antennas by mode cancellation method. IEEE Trans. Antennas Propag. 2021, 69, 3074–3083. [Google Scholar] [CrossRef]
- Li, M.; Wang, M.; Jiang, L.J.; Yeung, L.K. Decoupling of antennas with adjacent frequency bands using cascaded decoupling network. IEEE Trans. Antenna Propag. 2021, 69, 1173–1178. [Google Scholar] [CrossRef]
- Jeong, J.W.; Park, J.S. A microcontroller unit-based electromagnetic bandgap control scheme: Application for enhancing isolation in an antenna array and the EMI scanner system speed thereof. IEEE Trans. Microw. Theory Tech. 2020, 68, 4536–4553. [Google Scholar] [CrossRef]
- Gao, D.; Cao, Z.X.; Fu, S.D.; Quan, X.; Chen, P. A novel slot-array defected ground structure for decoupling microstrip antenna array. IEEE Trans. Antennas Propag. 2020, 68, 7027–7038. [Google Scholar] [CrossRef]
- Li, M.; Jiang, L.J.; Yeung, K.L. A general and systematic method to design neutralization lines for isolation enhancement in MIMO antenna arrays. IEEE Trans. Veh. Technol. 2020, 69, 6242–6253. [Google Scholar] [CrossRef]
- Li, Z.Y.; Du, Z.W.; Takahashi, M.; Saito, K.; Ito, K. Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals. IEEE Trans. Antennas Propag. 2012, 60, 473–481. [Google Scholar] [CrossRef]
- Cheng, Y.-F.; Cheng, K.-K.M. Decoupling of 2 × 2 MIMO Antenna by Using Mixed Radiation Modes and Novel Patch Element Design. IEEE Trans Antennas Propag. 2021, 69, 8204–8213. [Google Scholar] [CrossRef]
- Li, M.; Zhong, B.G.; Cheung, S.W. Isolation enhancement for MIMO patch antennas using near-field resonators as coupling-mode transducers. IEEE Trans. Antennas Propag. 2019, 67, 755–764. [Google Scholar] [CrossRef]
- Cheng, Y.F.; He, Y.; Wu, W.; Chen, C.; Wang, G. Wideband decoupling technique for two-element antenna array by using pixel neutralization line. Microw. Opt. Technol. Lett. 2022, 64, 1785–1792. [Google Scholar] [CrossRef]
- Abbas, A.; Hussain, N.; Sufian, M.A.; Jung, J.; Park, S.M.; Kim, N. Isolation and Gain Improvement of a Rectangular Notch UWB-MIMO Antenna. Sensors 2022, 22, 1460. [Google Scholar] [CrossRef]
- Sufian, M.A.; Hussain, N.; Abbas, A.; Lee, J.; Park, S.G.; Kim, N. Mutual Coupling Reduction of a Circularly Polarized MIMO Antenna Using Parasitic Elements and DGS for V2X Communications. IEEE Access 2022, 10, 56388–56400. [Google Scholar] [CrossRef]
- Bayarzaya, B.; Hussain, N.; Awan, W.A.; Sufian, M.A.; Abbas, A.; Choi, D.; Lee, J.; Kim, N. A Compact MIMO Antenna with Improved Isolation for ISM, Sub-6 GHz, and WLAN Application. Micromachines 2022, 13, 1355. [Google Scholar] [CrossRef] [PubMed]
- Roshani, S.; Shahveisi, H. Mutual Coupling Reduction in Microstrip Patch Antenna Arrays Using Simple Microstrip Resonator. Wirel. Pers. Commun. 2022, 126, 1665–1677. [Google Scholar] [CrossRef]
LG | WG | d | LC | WC | d1 | d2 | |
---|---|---|---|---|---|---|---|
Reference | 50 | 50 | 10 | 5.555 | 6.9 | 1.5 | 4.5 |
Proposed | 50 | 50 | 10 | 5.700 | 5.3 | 1.98 | 2.0 |
Ref. No. (Year) | Additional Structure | Element Spacing | Frequency (GHz) | Isolation Enhancement | Peak Efficiency |
---|---|---|---|---|---|
[11] (2020) | Required (Connect-Strip) | 0.440 λ0 | 2.39–2.53 | 10 dB | 87% |
[14] (2020) | Required (DGS) | 0.504 λ0 | 1.25–1.27 | 5 dB/15 dB | N.A. |
[18] (2019) | Required (Resonators) | 0.260 λ0 | 2.20–2.23 | 12 dB | 74% |
[19] (2020) | Required (Natura Line) | N.A. | 0.94–0.99 | 17 dB | N.A. |
This work | Not Required | 0.404 λ0 | 11.61–12.49 | 7 dB | 73% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Cheng, Y.-F.; Luo, J. Self-Decoupled MIMO Antenna Realized by Adjusting the Feeding Positions. Electronics 2022, 11, 4004. https://doi.org/10.3390/electronics11234004
He Y, Cheng Y-F, Luo J. Self-Decoupled MIMO Antenna Realized by Adjusting the Feeding Positions. Electronics. 2022; 11(23):4004. https://doi.org/10.3390/electronics11234004
Chicago/Turabian StyleHe, Yangyang, Yi-Feng Cheng, and Jiang Luo. 2022. "Self-Decoupled MIMO Antenna Realized by Adjusting the Feeding Positions" Electronics 11, no. 23: 4004. https://doi.org/10.3390/electronics11234004
APA StyleHe, Y., Cheng, Y.-F., & Luo, J. (2022). Self-Decoupled MIMO Antenna Realized by Adjusting the Feeding Positions. Electronics, 11(23), 4004. https://doi.org/10.3390/electronics11234004