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Abstract: This paper proposes a novel decoupling technique achieved by adjusting the position of
feeding probes of antennas. Two inherent radiation modes (patch mode and monopole mode), with
different patterns and polarizations, are simultaneously excited by the same feeding probe. High
isolation is realized based on manipulating the relationship of two-mode couplings by moving the
feeding positions. Since the two radiation modes are generated by the same antenna element, the
proposed MIMO antenna features a simple structure and compact size. For verification, a two-element
array with center-to-center spacing of 0.404 λ0 (λ0 is the wavelength in the air) is prototyped and
characterized. Simulation and experimental results show that the proposed novel technique can
offer higher port isolation (>18.1 dB), increased efficiency (>70%), and a lower envelope correlation
coefficient (ECC < 0.1) in the operating frequency band (11.61–12.49 GHz).

Keywords: MIMO antenna; mixed radiation modes; decoupling; mutual coupling; self-decoupled
antenna

1. Introduction

It is known that the MIMO antenna plays an important role in the 5G communication
system due to its high channel capacity, low delay, and outstanding transmission rate [1].
However, the inherent coupling between different radiating elements can decrease the
performance of the MIMO system [2]. In recent years, much effort has been put into
reducing the mutual couplings between antennas [3–23], including the use of decoupling
networks [3,4], electromagnetic band gap (EBG) structure [5], meta-surface [6], defected
ground structure (DGS) [7], neutralization line [8], parasitic element [9], and self-decoupled
elements [10]. In [11], an inductance-based decoupling structure is presented to decrease
the mutual coupling between extremely closely spaced microstrip antennas. A cascaded
power dividing decoupling network (C-PDDN) is proposed in [12], and it can reduce the
mutual coupling in adjacent or even contiguous frequency bands of the two antennas. The
EBG structure is also adopted to enhance the isolation of antenna arrays [13,14]. In [14],
a novel slot–array DGS is presented. Additionally, based on the analysis of equivalent
circuit model, the DGS can contribute to reducing the mutual coupling with stop-band
characteristics. Another well-known decoupling method is by using a neutralization
line (NL) [15]. An additional coupling path can be generated by NL to cancel out the
original coupling in MIMO antenna arrays [15]. Parasitic elements are used in [16] to
decrease the mutual coupling of antennas, and the performance of MIMO system is then
enhanced. However, most above-mentioned proposals adopt additional structures (circuit
or scatters) for decoupling purpose, which often occupy an excessive volume of space
and increase the complexity of the systems. Besides this, the extra structures usually have
negative impact on antenna performances, such as reducing the operating bandwidth
and decreasing the radiation efficiency. A high isolation air-patch antenna array loaded
with vertical resonators was proposed in [17]. However, three-dimensional structure is
necessarily required to construct the loaded resonators, which significantly increase the
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manufacturing complexity. So, the antenna array in [17] cannot be produced (on a large
scale) using the traditional printed board technology.

To overcome this problem, a novel and simple self-decoupled design method is
proposed in this paper. Two radiation modes create two types of mutual couplings in the
patch-monopole antenna array. The feeding position can adjust the strength and phase
relationship of two coupling modes. When the two couplings satisfy equal magnitude
and out-of-phase relationship, the total coupling can be canceled out, and high isolation
is realized. Moreover, the proposed self-decoupled antenna array has the advantages of
size miniaturization and simple design, thanks to the elimination of any extra decoupling
structure. For demonstration, a compact two-port patch–monopole antenna is designed,
fabricated, and characterized. Experimental results reveal that the proposed technique
can provide enhanced port isolation (>18.1 dB), increased antenna efficiency (>70%), and
improved pattern diversity (ECC < 0.1) in the operating frequency band, with simple and
compact construction.

2. Proposed Design

Figure 1 shows the structure of the two-port patch–monopole antenna, which is
composed of two patch radiators on the top layer of the substrate, a ground plane, and
two 50 Ω coaxial feeds. Figure 1b depicts the configuration of the MIMO antenna. The left
and right elements are symmetrical about the x axis. The two-port MIMO antenna has a
center-to-center spacing of d. The single element has a size of WC × LC, and the whole PCB
size is WG × LG. Changing the position of the feed port can adjust the components of patch
and monopole modes. High isolation is realized when two-mode couplings are canceled
out. Next, a detailed explanation on this decoupling method is illustrated as follows.
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Figure 1. Structure of the proposed antenna array. (a) Perspective view. (b) Top view. Figure 1. Structure of the proposed antenna array. (a) Perspective view. (b) Top view.
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2.1. A. Radiation Modes and Decoupling Mechanism

Figure 2 shows two different operating modes of the proposed patch–monopole
antenna. For patch mode (Figure 2a), the current flows from one edge of the patch to
the other edge. Note that the position of the feeding probe can also change the specific
horizontal polarization of the patch mode (for example, the specific polarization could be
along the x-direction, y-direction, or other directions). For the monopole mode (Figure 2b),
the current starts from the end of feeding probe (near the ground), flowing upwards, and
then going to the edges of the patch. In principle, these two modes co-exist (more or less) for
every feeding position. However, their strength and phase relationships are quite different
(for different positions). For better demonstration, as shown in Figure 1b, the center of the
dielectric substrate is defined as the coordinate origin (O). Therefore, the location (taking
right element as reference) of the feed port can be represented by coordinate points (Xi, Yi).
The solid line in Figure 3 shows two special cases (unit: mm) when the patch mode and
monopole mode are dominated, respectively. The middle pattern between two specific
radiation modes is shown by the dotted line in Figure 3. At location (1.275, 5), the feeding
probe is in the middle line of the patch (similar to the feeding approach of a traditional
patch). The patch mode is then dominated, which resulted in broadside radiation. However,
at location (0, 5), the feeding probe is at the center of the patch. Since the center position is a
virtual-ground (0 voltage) condition for patch mode, this position can only excite monopole
mode, which resulted in end-fire radiation. It is worth mentioning that, by adjusting
the position of the feed point Xi from 0 to 0.125, it can be observed that the radiation
mode is similar to the monopole mode, but there is already a trend of broadside radiation.
Continuing to adjust Xi from 0.125 to 0.425, broadside radiation is further increased. The
simulated results illustrate the existence of two radiation modes of the proposed patch–
monopole antenna, and some intermediate modes can be obtained by adjusting the feed
point position Xi.
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Electronics 2022, 11, 4004 4 of 9Electronics 2022, 11, x FOR PEER REVIEW 4 of 9 
 

 

 

Figure 3. Radiation modes (at 12.12 GHz) of proposed antenna with different feeding positions. 

Unit: mm. 

Obviously, since there are two radiation modes for every antenna, two types of mu-

tual couplings co-exist in the proposed array. The relative strengths and phases of the two 

radiation modes are controlled by tuning the coordinate point of the feed probe. Corre-

spondingly, the coupling paths are also modified when modifying the feeding position. It 

can be concluded that, if the amplitudes of two coupling paths are equal, and their phases 

are opposite, the mutual coupling can be totally cancelled out, and high port isolation is 

then achieved. The freedom of feeding position is mainly used for decoupling purposes. 

As for the impedance matching of antennas, it is simply realized by adjusting the width 

(WC) of the patch. 

2.2. B. Simulation Verification 

To further verify the decoupling mechanism of the proposed technique, the patch–

monopole antenna arrays with different feeding points are simulated by using an EM sim-

ulator. The antennas are fed by 50 Ω coaxial lines from the back of the ground. The center-

to-center distance between two patches is 0.404 𝜆0, where 𝜆0 is the wavelength in free 

space. Figure 4 shows the simulated scattering parameters of the patch–monopole an-

tenna with different feeding positions. It is obvious that, in the frequency band (11.65–

12.58 GHz) with return loss under −10 dB, the mutual coupling is reduced step by step 

with the altering of coordinate positions. Moreover, the port isolation is enhanced by 

about 3.5 dB~24.09 dB in the operating band. 

  
(a) (b) 

0

30

60

90

120

150

180

210

240

270

300

330

-30

-20

-10

0

10

-30

-20

-10

0

10

G
a
in

(d
B

)

 Monopole mode

 Patch mode

 Mid mode

(1.275,5)
(0,5)

(0.425,5)

(0.125,5)

 

11.0 11.5 12.0 12.5 13.0

-40

-30

-20

-10

0

-40

-20

0

 S11

 S21

S
-p

a
ra

m
e
te

rs
 (

d
B

)

Frequency (GHz)

Coordinate point :

(1.275mm, 5mm)

11.65 - 12.58 GHz

-12.0 dB

-15.73 dB

 

11.0 11.5 12.0 12.5 13.0

-40

-30

-20

-10

0

-40

-20

0

Coordinate point :

(1.075mm, 5mm)

 S11

 S21

S
-p

a
ra

m
e
te

rs
 (

d
B

)

Frequency (GHz)

-20.0dB

-13.13 dB

11.65 - 12.58 GHz

Figure 3. Radiation modes (at 12.12 GHz) of proposed antenna with different feeding positions. Unit:
mm.

Obviously, since there are two radiation modes for every antenna, two types of mutual
couplings co-exist in the proposed array. The relative strengths and phases of the two
radiation modes are controlled by tuning the coordinate point of the feed probe. Corre-
spondingly, the coupling paths are also modified when modifying the feeding position. It
can be concluded that, if the amplitudes of two coupling paths are equal, and their phases
are opposite, the mutual coupling can be totally cancelled out, and high port isolation is
then achieved. The freedom of feeding position is mainly used for decoupling purposes.
As for the impedance matching of antennas, it is simply realized by adjusting the width
(WC) of the patch.

2.2. B. Simulation Verification

To further verify the decoupling mechanism of the proposed technique, the patch–
monopole antenna arrays with different feeding points are simulated by using an EM
simulator. The antennas are fed by 50 Ω coaxial lines from the back of the ground. The
center-to-center distance between two patches is 0.404 λ0, where λ0 is the wavelength in
free space. Figure 4 shows the simulated scattering parameters of the patch–monopole
antenna with different feeding positions. It is obvious that, in the frequency band (11.65–
12.58 GHz) with return loss under −10 dB, the mutual coupling is reduced step by step
with the altering of coordinate positions. Moreover, the port isolation is enhanced by about
3.5 dB~24.09 dB in the operating band.
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Figure 4. Simulated S−parameters of path−monopole antenna array with different coordinate points
of feed probe. (a) (1.275 mm, 5 mm); (b) (1.075 mm, 5 mm); (c) (0.795 mm, 5 mm); and (d) (0.795 mm,
3.55 mm).

Figure 5 gives the electric filed distribution for the reference and proposed antenna
arrays. The feeding position of coupled antenna for the reference array exhibits high
electric filed. The feeding position of the coupled antenna for the proposed array shows
a null-filed-position (equivalent to short-circuited condition). Therefore, the isolation is
enhanced after decoupling.
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3. Experimental Validation

The proposed antenna array with center-to-center spacing of 0.404 λ0 is designed,
fabricated, and measured. A reference array based on traditional patch antennas is also
designed and characterized for comparison. Rogers RO4003 is selected to fabricate the
dielectric substrate, whose dielectric constant is 3.55, loss tangent is 0.0027, and thickness is
1.542 mm. The photographs of fabricated MIMO antennas are depicted in Figure 6, and
the dimensions of antennas are shown in Table 1. The S-parameters of MIMO antennas
are recorded by the Vector Network Analyzer (VNA), with frequency ranging from 11 to
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13 GHz. Figure 7 shows the measured S-parameters of both arrays. It can be seen that the
frequency band with reflection coefficient under −10 dB is from 11.61 to 12.49 GHz, and
the port-isolation of the proposed antenna is improved by about 6~32 dB in comparison to
the reference one. It is observed that the proposed MIMO antenna has a smaller frequency
deviation than the reference one. The difference is mainly due to the manufacturing errors
of substrate, welding, and test environment. The total efficiency and radiation patterns
are measured by a microwave chamber (Figure 6e). When one antenna port is excited for
measurement, another port is terminated by a 50 Ω load. Figure 8 shows the measured
efficiency of two antenna arrays. Obviously, in the operating band, more than 10% of the
total efficiency is increased after using the proposed decoupling method. Figure 9 gives
the measured ECC values (far-field) of both arrays. The proposed patch–monopole array
has much lower ECC (<0.1) than the traditional patch array (>0.5). Figure 10 shows the
radiation patterns of the arrays. In summary, the performance of the proposed array is
much better than the reference array.
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Table 1. Dimensions of fabricated antennas. (Unit: mm).

LG WG d LC WC d1 d2

Reference 50 50 10 5.555 6.9 1.5 4.5
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Table 2 shows the comparison of the proposed antenna with recently published
designs. The performance of the proposed antenna is competitive compared to other
antenna designs. In addition, this method requires no additional decoupling structure,
which makes the design simple and compact.

Table 2. Comparison with other decoupling methods.

Ref. No.
(Year)

Additional
Structure

Element
Spacing

Frequency
(GHz)

Isolation
Enhancement

Peak
Efficiency

[11]
(2020)

Required
(Connect-Strip) 0.440 λ0 2.39–2.53 10 dB 87%

[14]
(2020)

Required
(DGS) 0.504 λ0 1.25–1.27 5 dB/15 dB N.A.

[18]
(2019)

Required
(Resonators) 0.260 λ0 2.20–2.23 12 dB 74%

[19]
(2020)

Required
(Natura Line) N.A. 0.94–0.99 17 dB N.A.

This
work Not Required 0.404 λ0 11.61–12.49 7 dB 73%

4. Conclusions

This paper proposes a novel decoupling technique to improve the port isolation of
two-port MIMO antennas. In traditional patch arrays, there exist strong mutual couplings
between two antenna elements. However, by adjusting the position of feeding probes,
two types of mutual couplings are canceled out, and high isolation is then realized. The
proposed MIMO antenna has huge superiority thanks to its compact structure, smaller
size, and easier manufacturing. The proposed patch–monopole MIMO antenna is a good
candidate for modern wireless communication systems.
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