Digital Predistortion Combined with Iterative Method for MIMO Transmitters
Abstract
:1. Introduction
2. DPD Technique Designed for MIMO Transmitters
3. Proposed Method
3.1. Steps of the Implementation
Algorithm 1 Algorithm of Proposed Method |
1: Obtain the injection signal x1,inject, and x2,inject according to (16). 2: Use SISO method to linearize each branch, respectively. 3: Use the predistorted signal obtained in step 2 to modify the injection signal x1,inject, and x2,inject in step 1. 4: Update the predistorted signal using the method in step 2. 5: Obtain the optimal signal of each branch. |
3.2. Conditions for Convergence
4. Simulation Results
5. Experimental Verification
5.1. The Experimental Setup
5.2. Results Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Zhao, J. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun. Mag. 2014, 52, 36–43. [Google Scholar] [CrossRef]
- Amin, S.; Landin, P.N.; Handel, P.; Rönnow, D. Behavioral Modeling and Linearization of Crosstalk and Memory Effects in RF MIMO Transmitters. IEEE Trans. Microw. Theory Tech. 2014, 62, 810–823. [Google Scholar] [CrossRef]
- Zhai, J.; Zhang, L.; Yu, Z.; Zhou, J.; Hong, W. A Modified Canonical Piecewise-Linear Function-Based Behavioral Model for Wideband Power Amplifiers. IEEE Microw. Wireless Compon. Lett. 2016, 26, 195–197. [Google Scholar] [CrossRef]
- Bassam, S.A.; Helaoui, M.; Ghannouchi, F.M. Crossover Digital Predistorter for the Compensation of Crosstalk and Nonlinearity in MIMO Transmitters. IEEE Trans. Microw. Theory Tech. 2009, 57, 1119–1128. [Google Scholar] [CrossRef]
- Abdelhafiz, A.; Behjat, L.; Ghannouchi, F.M.; Helaoui, M.; Hammi, O. A High-Performance Complexity Reduced Behavioral Model and Digital Predistorter for MIMO Systems with Crosstalk. IEEE Trans. Commun. 2016, 64, 1996–2004. [Google Scholar] [CrossRef]
- Jaraut, P.; Rawat, M.; Ghannouchi, F.M. Efficient linearisation technique for crosstalk and power amplifier non-linearity suitable for massive MIMO transmitters. IET Commun. 2020, 14, 1485–1494. [Google Scholar] [CrossRef]
- Hausmair, K.; Landin, P.N.; Gustavsson, U.; Fager, C.; Eriksson, T. Digital Predistortion for Multi-Antenna Transmitters Affected by Antenna Crosstalk. IEEE Trans. Microw. Theory Tech. 2018, 66, 1524–1535. [Google Scholar] [CrossRef] [Green Version]
- Zhu, A. Decomposed Vector Rotation-Based Behavioral Modeling for Digital Predistortion of RF Power Amplifiers. IEEE Trans. Microw. Theory Tech. 2015, 63, 737–744. [Google Scholar] [CrossRef] [Green Version]
- Chua, L.; Kang, S.M. Section-wise piecewise-linear functions: Canonical representation, properties, and applications. Proc. IEEE 1977, 65, 915–929. [Google Scholar] [CrossRef]
- Zanen, J.; Klumperink, E.; Nauta, B. Power Efficiency Model for MIMO Transmitters Including Memory Polynomial Digital Predistortion. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1183–1187. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Xia, X.; Quan, X.; Shao, S.; Tang, Y. Digital Predistortion for MIMO Transmitters Using Multi-Channel Error Feedback Adaptation. IEEE Access 2020, 8, 209345–209355. [Google Scholar] [CrossRef]
- Sun, L.; Hu, X.; Liu, Z.; Han, K.; Zhang, S.; Wang, W.; Ghannouchi, F.M. A Low Complexity LUT-Based Digital Predistortion Block with New Pruning Method. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 1131–1134. [Google Scholar] [CrossRef]
- Abe, T.; Yamao, Y. Band-split parallel signal processing DPD for nonlinear compensation of broadband RF signal. In Proceedings of the 2018 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 28–31 August 2018. [Google Scholar]
- Pawliuk, P.; Jann, B. Closed-loop DPD with dynamic resource block scheduling. In Proceedings of the 2022 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Las Vegas, NV, USA, 16–19 January 2022. [Google Scholar]
- Rudin, W. Principles of Mathematical Analysis, 3rd ed.; International Series in Pure and Applied Mathematics; McGraw-Hill: New York, NY, USA, 1976. [Google Scholar]
- Boyd, S.; Chua, L.O.; Desoer, C.A. Analytical Foundations of Volterra Series. IMA J. Math. Control Inf. 1984, 1, 243–282. [Google Scholar] [CrossRef]
- Kim, J.; Konstantinou, K. Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett. 2001, 37, 1417–1418. [Google Scholar] [CrossRef]
- Roshani, S.; Azizian, J.; Roshani, S.; Jamshidi, M.; Parandin, F. Design of a miniaturized branch line microstrip coupler with a simple structure using artificial neural network. Frequenz 2022, 76, 255–263. [Google Scholar] [CrossRef]
- Landin, P.; Isaksson, M.; Handel, P. Comparison of evaluation criteria for power amplifier behavioral modeling. In Proceedings of the 2008 IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 15–20 June 2008. [Google Scholar]
DPD Technique | Channel 1 | Channel 2 | ||
---|---|---|---|---|
ACPR, dBc | NMSE, dB | ACPR, dBc | NMSE, dB | |
None | −38.99/−38.74 | −16.2872 | −32.14/−32.33 | −16.5668 |
PH DPD | −52.53/−56.85 | −28.1770 | −53.01/−56.58 | −31.7422 |
Proposed DPD | −56.73/−57.13 | −32.8119 | −51.95/−52.65 | −30.7402 |
DPD Technique | Channel 1 | Channel 2 | ||
---|---|---|---|---|
ACPR, dBc | NMSE, dB | ACPR, dBc | NMSE, dB | |
None | −38.99/−38.74 | −16.2872 | −32.14/−32.33 | −16.5668 |
PH DPD | −52.28/−53.35 | −29.0262 | −53.68/−54.57 | −29.8215 |
Proposed DPD | −55.14/−54.73 | −33.7672 | −51.10/−52.05 | −29.3378 |
DPD Technique | Channel 1 | Channel 2 | ||
---|---|---|---|---|
ACPR, dBc | NMSE, dB | ACPR, dBc | NMSE, dB | |
None | −36.42/−34.54 | −21.2948 | −30.83/−30.49 | −13.9403 |
PH DPD | −51.36/−50.88 | −33.6664 | −52.35/−52.27 | −37.1289 |
Proposed DPD | −49.00/−49.02 | −33.4946 | −50.26/−49.77 | −37.0343 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Wu, Y.; Hu, X.; Wang, W. Digital Predistortion Combined with Iterative Method for MIMO Transmitters. Electronics 2022, 11, 3890. https://doi.org/10.3390/electronics11233890
Yang M, Wu Y, Hu X, Wang W. Digital Predistortion Combined with Iterative Method for MIMO Transmitters. Electronics. 2022; 11(23):3890. https://doi.org/10.3390/electronics11233890
Chicago/Turabian StyleYang, Moushu, Yongle Wu, Xin Hu, and Weimin Wang. 2022. "Digital Predistortion Combined with Iterative Method for MIMO Transmitters" Electronics 11, no. 23: 3890. https://doi.org/10.3390/electronics11233890
APA StyleYang, M., Wu, Y., Hu, X., & Wang, W. (2022). Digital Predistortion Combined with Iterative Method for MIMO Transmitters. Electronics, 11(23), 3890. https://doi.org/10.3390/electronics11233890