HfOx/Ge RRAM with High ON/OFF Ratio and Good Endurance
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zahoor, F.; Zulkifli, T.Z.A.; Khanday, F.A. Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 2020, 15, 1–26. [Google Scholar] [CrossRef]
- Liauw, Y.Y.; Zhang, Z.; Kim, W.; El Gamal, A.; Wong, S.S. Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012; pp. 406–408. [Google Scholar] [CrossRef]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Yu, Z.; Wang, Z.; Zhang, T.; Yang, Y.; Cai, Y.; Huang, R. Improvement of HfOx-based RRAM device variation by inserting ALD TiN buffer layer. IEEE Electron. Device Lett. 2018, 39, 819–822. [Google Scholar] [CrossRef]
- Lv, H.; Xu, X.; Liu, H.; Liu, R.; Liu, Q.; Banerjee, W.; Sun, H.; Long, S.; Li, L.; Liu, M. Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory. Sci. Rep. 2015, 5, 9964. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Y.; Roelofs, R.; Redolfi, A.; Degraeve, R.; Crotti, D.; Fantini, A.; Clima, S.; Govoreanu, B.; Komura, M.; Goux, L.; et al. Tailoring switching and endurance/retention reliability characteristics of HfO2/Hf RRAM with Ti, Al, Si dopants. In Proceedings of the 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, USA, 9–12 June 2014; pp. 1–2. [Google Scholar] [CrossRef]
- Kim, Y.M.; Lee, J.S. Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. J. Appl. Phys. 2008, 104, 114115. [Google Scholar] [CrossRef]
- Kang, J.; Park, I.S. Asymmetric current behavior on unipolar resistive switching in Pt/HfO2/Pt resistor with symmetric electrodes. IEEE Trans. Electron. Devices 2016, 63, 2380–2383. [Google Scholar] [CrossRef]
- Park, I.S.; Jung, Y.C.; Ahn, J. Anode dependence of set voltage in resistive switching of metal/HfO2/metal resistors. Appl. Phys. Lett. 2014, 105, 223512. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, H.-Y.; Wu, S.-C.; Jiang, Z.; Yu, S.; Hou, T.-H.; PhilipáWong, H.-S.; Nishi, Y. Multi-Level Control of Conductive Nano-Filament Evolution in HfO2 ReRAM by Pulse-Train Operations. Nanoscale 2014, 6, 5698–5702. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lu, W.; Long, B.; Li1, Y.; Gilmer, D.; Bersuker, G.; Bhunia, S.; Jha, R. Switching Characteristics of W/Zr/HfO2/TiN ReRAM Devices for Multi-Level Cell Non-Volatile Memory Applications. Semicond. Sci. Technol. 2015, 30, 075002. [Google Scholar] [CrossRef]
- Chand, U.; Huang, C.-Y.; Jieng, J.-H.; Jang, W.-Y.; Lin, C.-H.; Tseng, T.-Y. Suppression of endurance degradation by utilizing oxygen plasma treatment in HfO2 resistive switching memory. Appl. Phys. Lett. 2015, 106, 153502. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chang, Y.-F.; Wu, X.; Zhoua, F.; Guo, M.; Lin, C.-Y.; Hsieh, C.-C.; Fowler, B.; Chang, T.-C.; Lee, J.C. Dynamic conductance characteristics in HfOx-based resistive random access memory. RSC Adv. 2017, 7, 12984–12989. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-T.; Liu, H.-W.; Chen, P.-H.; Chang, T.-C.; Tsai, T.-M.; Chu, T.-J.; Pan, C.-H.; Wu, C.-H.; Yang, C.-C.; Wang, M.-C.; et al. A method to reduce forming voltage without degrading device performance in hafnium oxide-based 1T1R resistive random access memory. IEEE J. Electron. Devices Soc. 2018, 6, 341–345. [Google Scholar] [CrossRef]
- Wu, L.; Liu, H.; Lin, J.; Wang, S. Self-compliance and high performance Pt/HfOx/Ti RRAM achieved through annealing. Nanomaterials 2020, 10, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nail, C.; Molas, G.; Blaise, P.; Piccolboni, G.; Sklenard, B.; Cagli, C.; Perniola, L. Understanding RRAM endurance, retention and window margin trade-off using experimental results and simulations. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 4–5. [Google Scholar] [CrossRef]
- Golonzka, O.; Arslan, U.; Bai, P.; Bohr, M.; Baykan, O.; Chang, Y.; Fischer, K. Non-volatile RRAM embedded into 22FFL FinFET technology. In Proceedings of the 2019 Symposium on VLSI Technology, Kyoto, Japan, 9–14 June 2019; pp. T230–T231. [Google Scholar] [CrossRef]
- Fackenthal, R.; Kitagawa, M.; Otsuka, W.; Prall, K.; Mills, D.; Tsutsui, K.; Hush, G. 19.7 A 16Gb ReRAM with 200MB/s write and 1GB/s read in 27 nm technology. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 338–339. [Google Scholar] [CrossRef]
- Zambelli, C.; Castellari, M.; Olivo, P.; Bertozzi, D. Correlating power efficiency and lifetime to programming strategies in rram-based fpgas. In Proceedings of the 2018 New Generation of CAS (NGCAS), Valletta, Malta, 20–23 November 2018; pp. 21–24. [Google Scholar] [CrossRef]
- Yu, S.; Shim, W.; Peng, X.; Luo, Y. RRAM for compute-in-memory: From inference to training. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 2753–2765. [Google Scholar] [CrossRef]
- Wei, N.; Chen, B.; Zheng, Z.; Cai, Z.; Zhang, R.; Cheng, R.; Lee, S.-W.; Zhao, Y. Ge-based Non-Volatile Logic-Memory Hybrid Devices for NAND Memory Application. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 173–176. [Google Scholar] [CrossRef]
- Wei, N.; Zhang, Y.; Chen, B.; Zhao, Y. Ge-based non-volatile memories. Jpn. J. Appl. Phys. 2020, 59, SM0802. [Google Scholar] [CrossRef]
- Kuhn, M. A Quasi-Static Technique for MOS C-V And Surface State Measurements. Solid State Electron. 1970, 13, 873–885. [Google Scholar] [CrossRef]
- Berglund, C.N. Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces. IEEE Trans. Electron. Devices 1966, 13, 701–705. [Google Scholar] [CrossRef]
- Lim, E.W.; Ismail, R. Conduction mechanism of valence change resistive switching memory: A survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Monaghan, S.; Hurley, P.K.; Cherkaoui, K.; Negara, M.A.; Schenk, A. Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures. Solid-State Electron. 2009, 53, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Degraeve, R.; Fantini, A.; Roussel, P.; Goux, L.; Costantino, A.; Chen, C.Y.; Jurczak, M. Quantitative endurance failure model for filamentary RRAM. In Proceedings of the 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–18 June 2015; pp. T188–T189. [Google Scholar] [CrossRef]
- Zhao, L.; Ryu, S.W.; Hazeghi, A.; Duncan, D.; Magyari-Köpe, B.; Nishi, Y. Dopant selection rules for extrinsic tunability of HfOx RRAM characteristics: A systematic study. In Proceedings of the 2013 Symposium on VLSI Technology, Kyoto, Japan, 11–13 June 2013; pp. T106–T107. [Google Scholar]
- Takeuchi, H.; Ha, D.; King, T.J. Observation of bulk HfO2 defects by spectroscopic ellipsometry. J. Vac. Sci. Technol. A Vac. Surf. Film. 2004, 22, 1337–1341. [Google Scholar] [CrossRef]
- Xiong, K.; Robertson, J.; Gibson, M.C.; Clark, S.J. Defect energy levels in HfO2 high-dielectric-constant gate oxide. Appl. Phys. Lett. 2005, 87, 183505. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Mei, S.; Bosman, M.; Raghavan, N.; Zhang, X.; Cha, D.; Pey, K.L. Evolution of Filament Formation in Ni/HfO2/SiOx/Si-Based RRAM Devices. Adv. Electron. Mater. 2015, 1, 1500130. [Google Scholar] [CrossRef]
- Chen, P.Y.; Yu, S. Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron. Devices 2015, 62, 4022–4028. [Google Scholar] [CrossRef]
- Yin, S.; Sun, X.; Yu, S.; Seo, J. High-Throughput in-Memory Computing for Binary Deep Neural Networks with Monolithically Integrated RRAM and 90 nm CMOS. IEEE Trans. Electron. Devices 2020, 67, 4185–4192. [Google Scholar] [CrossRef]
Ref. | Structure | Window | Retention | Endurance | VF/VSET/VRESET | ICC |
---|---|---|---|---|---|---|
[10] | TiN/HfO2/Pt | 105 | 104 s | NS 1 | FF 2/−4.3/6 V | NS |
[11] | W/Zr/HfO2/TiN | >10 | NS | >106 | 2/0.5/−1.25 V | 50 μA |
[12] | Ti/HfO2/TiN | 102 | 104 s | 1010 | NS/3/−3.5 V | 1 mA |
[13] | Al/HfOx/Al | 104 | NS | NS | 1/1.8/0.8 V | 1 μA–1 mA |
[14] | Ti/HfO2/TiN | >10 | 104 s | >107 | FF/0.5/−0.5 V | NS |
[4] | TiN(Ti)/HfOx/W | ~10 | NS | >104 | 2.5/0.5/−1 V | 500 μA |
[15] | Ti/HfOx/Pt | 40 | >105 | >103 | 2.5/0.5/−0.7 V | 1 mA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, N.; Ding, X.; Gao, S.; Wu, W.; Zhao, Y. HfOx/Ge RRAM with High ON/OFF Ratio and Good Endurance. Electronics 2022, 11, 3820. https://doi.org/10.3390/electronics11223820
Wei N, Ding X, Gao S, Wu W, Zhao Y. HfOx/Ge RRAM with High ON/OFF Ratio and Good Endurance. Electronics. 2022; 11(22):3820. https://doi.org/10.3390/electronics11223820
Chicago/Turabian StyleWei, Na, Xiang Ding, Shifan Gao, Wenhao Wu, and Yi Zhao. 2022. "HfOx/Ge RRAM with High ON/OFF Ratio and Good Endurance" Electronics 11, no. 22: 3820. https://doi.org/10.3390/electronics11223820
APA StyleWei, N., Ding, X., Gao, S., Wu, W., & Zhao, Y. (2022). HfOx/Ge RRAM with High ON/OFF Ratio and Good Endurance. Electronics, 11(22), 3820. https://doi.org/10.3390/electronics11223820