Ultrawideband Precision RCS Regulation for Trihedral Corner Reflectors by Loading Resistive Film Absorbers
Abstract
:1. Introduction
2. Operating Principle
3. Structure Design and Simulation Results
3.1. Design of Metamaterial Surface Based on Resistive Film Technology
3.2. The Simulation Results of Metamaterial Surface Angle Reflector Based on Resistive Film Technology Are Loaded
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, J.-K.; Shi, J.-M.; Zhao, D.-P.; Wang, Q.-C.; Wang, C.-M. Realization of compatible stealth material for infrared, laser and radar based on one-dimensional doping-structure photonic crystals. Infrared Phys. Technol. 2017, 85, 62–65. [Google Scholar] [CrossRef]
- Hanninen, I.; Pitkonen, M.; Nikoskinen, K.; Sarvas, J. Method of Moments Analysis of the Backscattering Properties of a Corrugated Trihedral Corner Reflector. IEEE Trans. Antennas Propag. 2006, 54, 1167–1173. [Google Scholar] [CrossRef]
- Uslenghi, P.L.E. Closed-Form Scattering by a Class of Skew Trihedral Reflectors. IEEE Trans. Antennas Propag. 2017, 65, 3279–3281. [Google Scholar] [CrossRef]
- Maddio, P.; Meschini, A.; Sinatra, R.; Cammarata, A. An optimized form-finding method of an asymmetric large deployable reflector. Eng. Struct. 2019, 181, 27–34. [Google Scholar] [CrossRef]
- Maddio, P.D.; Salvini, P.; Sinatra, R.; Cammarata, A. Optimization of the efficiency of large deployable reflectors by measuring the error around the feed. Acta Astronaut. 2022, 199, 206–223. [Google Scholar] [CrossRef]
- Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1, 297–315. [Google Scholar]
- Pang, Y.; Shen, Y.; Li, Y.; Wang, J.; Xu, Z.; Qu, S. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption. J. Appl. Phys. 2018, 123, 155106. [Google Scholar] [CrossRef]
- Kim, J.; Han, K.; Hahn, J.W. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci. Rep. 2017, 7, 6740. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.K. Frequency Selective Surface and Grid Array, 1st ed.; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Munk, B.A. Frequency Selective Surfaces: Theory and Design, 1st ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Ghosh, S.; Bhattacharyya, S.; Kaiprath, Y.; Srivastava, K.V. Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 2014, 115, 104503. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Ghosh, S.; Chaurasiya, D.; Srivastava, K.V. Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl. Phys. A 2014, 118, 207–215. [Google Scholar] [CrossRef]
- Costa, F.; Monorchio, A.; Manara, G. Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 1551–1558. [Google Scholar] [CrossRef]
- Zhang, P.C.; Lin, X.Q.; Cheng, F.; Shen, R.; Fan, Y. A wideband wide-angle polarization-insensitive metamaterial absorber. In Proceedings of the Progress in Electromagnetics Research Symposium, Guangzhou, China, 25–28 August 2014; pp. 941–943. [Google Scholar]
- Yoo, M.; Lim, S. Polarization-Independent and Ultrawideband Metamaterial Absorber Using a Hexagonal Artificial Impedance Surface and a Resistor-Capacitor Layer. IEEE Trans. Antennas Propag. 2014, 62, 2652–2658. [Google Scholar]
- Feng, J.; Si, L.; Sun, L.; Tian, Y.; Li, D. An ultrathin polarization-independent wideband metamaterial absorber for EMC applications. In Proceedings of the 2017 International Symposium on Electromagnetic Compatibility—EMC EUROPE, Angers, France, 4–7 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Li, M.; Xiao, S.; Bai, Y.-Y.; Wang, B.-Z. An Ultrathin and Broadband Radar Absorber Using Resistive FSS. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 748–751. [Google Scholar]
- Sun, L.; Cheng, H.; Zhou, Y.; Wang, J. Broadband metamaterial absorber based on coupling resistive frequency selective surface. Opt. Express 2012, 20, 4675–4680. [Google Scholar] [CrossRef] [PubMed]
- Zabri, S.; Cahill, R.; Schuchinsky, A. Compact FSS absorber design using resistively loaded quadruple hexagonal loops for bandwidth enhancement. Electron. Lett. 2015, 51, 162–164. [Google Scholar] [CrossRef] [Green Version]
- Modi, A.Y.; Alyahya, M.A.; Balanis, C.A.; Birtcher, C.R. Metasurface-Based Method for Broadband RCS Reduction of Dihedral Corner Reflectors With Multiple Bounces. IEEE Trans. Antennas Propag. 2020, 68, 1436–1447. [Google Scholar] [CrossRef]
The Angle of Inclination (θ) | Net Reduction of 15 GHz (dB) | Net Reduction of 35 GHz (dB) |
---|---|---|
−20° | 0.35 | 0.61 |
−10° | 0.11 | 1.25 |
0° | 0 | 0.74 |
10° | 0.39 | 0.56 |
20° | −0.23 | −0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Yin, F.; Xu, C.; Zhao, S.; Yan, H.; Yi, H. Ultrawideband Precision RCS Regulation for Trihedral Corner Reflectors by Loading Resistive Film Absorbers. Electronics 2022, 11, 3696. https://doi.org/10.3390/electronics11223696
Sun T, Yin F, Xu C, Zhao S, Yan H, Yi H. Ultrawideband Precision RCS Regulation for Trihedral Corner Reflectors by Loading Resistive Film Absorbers. Electronics. 2022; 11(22):3696. https://doi.org/10.3390/electronics11223696
Chicago/Turabian StyleSun, Tianqi, Fangfang Yin, Chengxiang Xu, Shan Zhao, Hua Yan, and Hongcheng Yi. 2022. "Ultrawideband Precision RCS Regulation for Trihedral Corner Reflectors by Loading Resistive Film Absorbers" Electronics 11, no. 22: 3696. https://doi.org/10.3390/electronics11223696
APA StyleSun, T., Yin, F., Xu, C., Zhao, S., Yan, H., & Yi, H. (2022). Ultrawideband Precision RCS Regulation for Trihedral Corner Reflectors by Loading Resistive Film Absorbers. Electronics, 11(22), 3696. https://doi.org/10.3390/electronics11223696