Outage Constrained Design in NOMA-Based D2D Offloading Systems
Abstract
:1. Introduction
1.1. Related Works
1.2. Main Contributions
- (1)
- In MEC, D2D communication technology is adopted to reduce the burden of edge servers through user cooperative offloading.
- (2)
- Due to the inevitable CSI estimation error, the total transmit power minimization problem of D2D systems is established subject to individual rate OP constraints under the imperfect CSI model. Here, the rate OP constraint represents the probability that each user’s rate reaches its minimum rate requirement with a probability greater than the preset probability.
- (3)
- The problem formulated is non-convex, and it is hard to tackle. The equivalent transformation of the rate OP is carried out using the Bernstein inequality, and then the reformulated problem can be efficiently solved by semi-definite relaxation (SDR).
- (4)
- The numerical results show that the level of statistical error has a great influence on the performance of the NOMA-based D2D system. Specifically, the total transmitted power decreases as the error decreases.The numerical results also verify that the system power consumption of D2D with NOMA is better than OMA.
2. System Model
2.1. Signal Model
2.2. Channel Uncertainty Model
3. Problem Formation and Solution
3.1. Problem Formulation
3.2. Beamforming Design
3.3. Matrix Lifting
Algorithm 1: SDR Algorithm for Problem . |
1: random initial value , set predefined threshold . 2:. 3: for do 4: Solve the problem , to get . 5 , then 6: . 7: , then 8: Cholesky decomposition for to obtain . 9: 10: 11: Gaussian randomization to obtain 12: 13: 14: 15: |
4. Simulation Results and Analysis
4.1. Simulation Settings
4.2. Results Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, T.; Ge, X.; Wang, L.; Kwak, K.S.; Han, Y.; Liu, X. 5G Converged Cell-Less Communications in Smart Cities. IEEE Commun. Mag. 2017, 55, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, S.; Liu, P.; Sun, F.; Cioffi, J.M.; Yang, L. Overhearing Protocol Design Exploiting Intercell Interference in Cooperative Green Networks. IEEE Trans. Veh. Technol. 2016, 65, 441–446. [Google Scholar] [CrossRef]
- Ali, M.S.; Hossain, E.; Kim, D.I. LTE/LTE-A Random Access for Massive Machine-Type Communications in Smart Cities. IEEE Commun. Mag. 2017, 55, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, P.; Zou, C.; Sun, F.; Cioffi, J.M.; Yang, L. Spectral-Efficient Cellular Communications With Coexistent One- and Two-Hop Transmissions. IEEE Trans. Veh. Technol. 2016, 65, 6765–6772. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, I.H.; Lee, J. Capacity Scaling for D2D Aided Cooperative Relaying Systems Using NOMA. IEEE Wirel. Commun. Lett. 2018, 7, 42–45. [Google Scholar] [CrossRef]
- Chen, J.; Jia, J.; Liu, Y.; Wang, X.; Aghvami, A.H. Optimal Resource Block Assignment and Power Allocation for D2D-Enabled NOMA Communication. IEEE Access 2019, 7, 90023–90035. [Google Scholar] [CrossRef]
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Cao, G. Quality-Aware Traffic Offloading in Wireless Networks. IEEE Trans. Mob. Comput. 2017, 16, 3182–3195. [Google Scholar] [CrossRef]
- Tao, Y.; You, C.; Zhang, P.; Huang, K. Stochastic Control of Computation Offloading to a Helper With a Dynamically Loaded CPU. IEEE Trans. Wirel. Commun. 2019, 18, 1247–1262. [Google Scholar] [CrossRef]
- Diao, X.; Zheng, J.; Wu, Y.; Cai, Y. Joint Computing Resource, Power and Channel Allocations for D2D-Assisted and NOMA-based Mobile Edge Computing. IEEE Access 2019, 7, 9243–9257. [Google Scholar] [CrossRef]
- He, Y.; Ren, J.; Yu, G.; Cai, Y. D2D Communications Meet Mobile Edge Computing for Enhanced Computation Capacity in Cellular Networks. IEEE Trans. Wirel. Commun. 2019, 18, 1750–1763. [Google Scholar] [CrossRef]
- Jameel, F.; Hamid, Z.; Jabeen, F.; Zeadally, S.; Javed, M.A. A Survey of Device-to-Device Communications: Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 2133–2168. [Google Scholar] [CrossRef]
- Chukhno, N.; Trilles, S.; Torres-Sospedra, J.; Iera, A.; Araniti, G. D2D-based Cooperative Positioning Paradigm for Future Wireless Systems: A Survey. IEEE Sens. J. 2021. [Google Scholar] [CrossRef]
- Wang, F.; Xu, C.; Song, L.; Han, Z. Energy-Efficient Resource Allocation for Device-to-Device Underlay Communication. IEEE Trans. Wirel. Commun. 2015, 14, 2082–2092. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Liu, Q.; Zheng, F.; Gao, X.; You, X. Energy-Efficient Joint Resource Allocation and Power Control for D2D Communications. IEEE Trans. Veh. Technol. 2016, 65, 6119–6127. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Ding, H.; Fang, Y.; Shi, J. Energy-Efficient D2D Communications With Dynamic Time-Resource Allocation. IEEE Trans. Veh. Technol. 2019, 68, 11985–11999. [Google Scholar] [CrossRef]
- Najla, M.; Becvar, Z.; Mach, P.; Gesbert, D. Predicting Device-to-Device Channels From Cellular Channel Measurements: A Learning Approach. IEEE Trans. Wirel. Commun. 2020, 19, 7124–7138. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Q.; Cai, Y.; Juntti, M. Latency Minimization in Intelligent Reflecting Surface Assisted D2D Offloading Systems. IEEE Commun. Lett. 2021, 25, 3046–3050. [Google Scholar] [CrossRef]
- Zhou, Z.; Ota, K.; Dong, M.; Xu, C. Energy-Efficient Matching for Resource Allocation in D2D Enabled Cellular Networks. IEEE Trans. Veh. Technol. 2017, 66, 5256–5268. [Google Scholar] [CrossRef] [Green Version]
- Kuang, Z.; Liu, G.; Li, G.; Deng, X. Energy Efficient Resource Allocation Algorithm in Energy Harvesting-Based D2D Heterogeneous Networks. IEEE Internet Things J. 2019, 6, 557–567. [Google Scholar] [CrossRef]
- Sawyer, N.; Smith, D.B. Flexible Resource Allocation in Device-to-Device Communications Using Stackelberg Game Theory. IEEE Trans. Commun. 2019, 67, 653–667. [Google Scholar] [CrossRef]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Higuchi, K. Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access. In Proceedings of the 2013 IEEE 77th vehicular technology conference (VTC Spring), Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar]
- Saito, Y.; Benjebbour, A.; Kishiyama, Y.; Nakamura, T. System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 8–11 September 2013; pp. 611–615. [Google Scholar] [CrossRef]
- Di, B.; Song, L.; Li, Y. Sub-Channel Assignment, Power Allocation, and User Scheduling for Non-Orthogonal Multiple Access Networks. IEEE Trans. Wirel. Commun. 2016, 15, 7686–7698. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ng, D.W.K.; Ding, Z.; Schober, R. Optimal Joint Power and Subcarrier Allocation for Full-Duplex Multicarrier Non-Orthogonal Multiple Access Systems. IEEE Trans. Commun. 2017, 65, 1077–1091. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Schober, R.; Poor, H.V. A General MIMO Framework for NOMA Downlink and Uplink Transmission Based on Signal Alignment. IEEE Trans. Wirel. Commun. 2016, 15, 4438–4454. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Poor, H.V. Design of Massive-MIMO-NOMA With Limited Feedback. IEEE Signal Process. Lett. 2016, 23, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Song, T.; Gui, G. Deep Cognitive Perspective: Resource Allocation for NOMA-Based Heterogeneous IoT With Imperfect SIC. IEEE Internet Things J. 2019, 6, 2885–2894. [Google Scholar] [CrossRef]
- Bai, W.; Yao, T.; Zhang, H.; Leung, V.C.M. Research on Channel Power Allocation of Fog Wireless Access Network Based on NOMA. IEEE Access 2019, 7, 32867–32873. [Google Scholar] [CrossRef]
- Sun, M.; Xu, X.; Tao, X.; Zhang, P.; Leung, V.C.M. NOMA-Based D2D-Enabled Traffic Offloading for 5G and Beyond Networks Employing Licensed and Unlicensed Access. IEEE Trans. Wirel. Commun. 2020, 19, 4109–4124. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wang, A.; Ye, N. Beamspace MIMO-NOMA for Millimeter-Wave Broadcasting via Full-Duplex D2D Communications. IEEE Trans. Broadcast. 2020, 66, 545–554. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, C.; Yang, Z.; Chen, M. Resource Allocation for D2D Communications Underlaying a NOMA-Based Cellular Network. IEEE Wirel. Commun. Lett. 2018, 7, 130–133. [Google Scholar] [CrossRef] [Green Version]
- Madani, N.; Sodagari, S. Performance Analysis of Non-Orthogonal Multiple Access With Underlaid Device-to-Device Communications. IEEE Access 2018, 6, 39820–39826. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Chai, K.K.; Chen, Y.; Elkashlan, M. Joint Subchannel and Power Allocation for NOMA Enhanced D2D Communications. IEEE Trans. Commun. 2017, 65, 5081–5094. [Google Scholar] [CrossRef]
- Le, C.B.; Do, D.T. Joint evaluation of imperfect SIC and fixed power allocation scheme for wireless powered D2D-NOMA networks with multiple antennas at base station. Wirel. Netw. 2019, 25, 5069–5081. [Google Scholar] [CrossRef]
- Duan, W.; Ji, Y.; Hou, J.; Zhuo, B.; Wen, M.; Zhang, G. Partial-DF Full-Duplex D2D-NOMA Systems for IoT With/Without an Eavesdropper. IEEE Internet Things J. 2021, 8, 6154–6166. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Xu, H.; Chen, X.; Li, R. Federated Learning: Sum Power Constraints Optimization Design. Arab. J. Sci. Eng. 2021. [Google Scholar] [CrossRef]
- Hassan, A.K.; Moinuddin, M.; Al-Saggaf, U.M.; Aldayel, O.; Davidson, T.N.; Al-Naffouri, T.Y. Performance Analysis and Joint Statistical Beamformer Design for Multi-User MIMO Systems. IEEE Commun. Lett. 2020, 24, 2152–2156. [Google Scholar] [CrossRef]
- Wang, K.Y.; So, A.M.C.; Chang, T.H.; Ma, W.K.; Chi, C.Y. Outage Constrained Robust Transmit Optimization for Multiuser MISO Downlinks: Tractable Approximations by Conic Optimization. IEEE Trans. Signal Process. 2014, 62, 5690–5705. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.Q.; Ma, W.K.; So, M.C.; Ye, Y.; Zhang, S. Semidefinite Relaxation of Quadratic Optimization Problems. IEEE Signal Process. Mag. 2010, 27, 20–34. [Google Scholar] [CrossRef]
- Grant, M. CVX: MATLAB Software for Disciplined Convex Programming. 2008. Available online: http://cvxr.com/cvx (accessed on 5 November 2021).
Parameter | Value |
---|---|
link loss index of users | |
Noise power | dBm |
Convergence tolerance | |
Communication bandwidth | Hz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, G.; Xu, H.; Ren, Y.; Chen, X.; Li, R. Outage Constrained Design in NOMA-Based D2D Offloading Systems. Electronics 2022, 11, 256. https://doi.org/10.3390/electronics11020256
Chen Y, Zhang G, Xu H, Ren Y, Chen X, Li R. Outage Constrained Design in NOMA-Based D2D Offloading Systems. Electronics. 2022; 11(2):256. https://doi.org/10.3390/electronics11020256
Chicago/Turabian StyleChen, Yun, Guoping Zhang, Hongbo Xu, Yinshuan Ren, Xue Chen, and Ruijie Li. 2022. "Outage Constrained Design in NOMA-Based D2D Offloading Systems" Electronics 11, no. 2: 256. https://doi.org/10.3390/electronics11020256
APA StyleChen, Y., Zhang, G., Xu, H., Ren, Y., Chen, X., & Li, R. (2022). Outage Constrained Design in NOMA-Based D2D Offloading Systems. Electronics, 11(2), 256. https://doi.org/10.3390/electronics11020256