Tensor-Based Recursive Least-Squares Adaptive Algorithms with Low-Complexity and High Robustness Features
Abstract
:1. Introduction
2. System Context
3. Robust Tensor-Based RLS Adaptive Algorithms
3.1. Tensor-Based Recursive Least-Squares Dichotomous Coordinate Descent Algorithm (RLS-DCD-T)
Algorithm 1 Exponential Weighted RLS-T Algorithm for a single channel. |
: |
Set |
0 |
1 Compute , based on (14) |
2 |
3 |
4 |
5 |
6 |
7 |
Algorithm 2 The DCD iterations with a leading element. |
The content of the table is correct. |
1 |
2 && |
3 |
4 |
5 |
3.2. Robust RLS-DCD-T Adaptive Algorithm Based on Matrix Regularization
3.3. Practical Considerations
Algorithm 3 VR-RLS-DCD-T. |
: |
Set |
0 |
1 Compute , based on (14) |
2 |
3 |
4 |
5 a) for and |
5 b) |
5 c) |
5 d) |
6 |
7 |
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cichocki, A.; Mandic, D.; De Lathauwer, L.; Zhou, G.; Zhao, Q.; Caiafa, C.; PHAN, H.A. Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis. IEEE Signal Process. Mag. 2015, 32, 145–163. [Google Scholar] [CrossRef] [Green Version]
- Vervliet, N.; Debals, O.; Sorber, L.; De Lathauwer, L. Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis. IEEE Signal Process. Mag. 2014, 31, 71–79. [Google Scholar] [CrossRef]
- Sidiropoulos, N.D.; De Lathauwer, L.; Fu, X.; Huang, K.; Papalexakis, E.E.; Faloutsos, C. Tensor Decomposition for Signal Processing and Machine Learning. IEEE Trans. Signal Process. 2017, 65, 3551–3582. [Google Scholar] [CrossRef]
- Boussé, M.; Debals, O.; De Lathauwer, L. A Tensor-Based Method for Large-Scale Blind Source Separation Using Segmentation. IEEE Trans. Signal Process. 2017, 65, 346–358. [Google Scholar] [CrossRef]
- Dogariu, L.M.; Ciochină, S.; Paleologu, C.; Benesty, J.; Oprea, C. An Iterative Wiener Filter for the Identification of Multilinear Forms. In Proceedings of the 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), Milan, Italy, 7–9 July 2020; pp. 193–197. [Google Scholar] [CrossRef]
- Haykin, S. Adaptive Filter Theory, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Benesty, J.; Huang, Y. Adaptive Signal Processing–Applications to Real-World Problems; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Dogariu, L.M.; Elisei-Iliescu, C.; Paleologu, C.; Benesty, J.; Ciochină, S. A Tensorial Affine Projection Algorithm. In Proceedings of the 2021 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 15–16 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Rupp, M.; Schwarz, S. A tensor LMS algorithm. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015; pp. 3347–3351. [Google Scholar] [CrossRef]
- Rupp, M.; Schwarz, S. Gradient-based approaches to learn tensor products. In Proceedings of the 2015 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015; pp. 2486–2490. [Google Scholar]
- Dogariu, L.M.; Paleologu, C.; Benesty, J.; Oprea, C.; Ciochină, S. LMS Algorithms for Multilinear Forms. In Proceedings of the 2020 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 5–6 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Kuhn, E.V.; Pitz, C.A.; Matsuo, M.V.; Bakri, K.J.; Seara, R.; Benesty, J. A Kronecker product CLMS algorithm for adaptive beamforming. Digit. Signal Process. 2021, 111, 102968. [Google Scholar] [CrossRef]
- Fîciu, I.D.; Stanciu, C.; Anghel, C.; Paleologu, C.; Stanciu, L. Combinations of Adaptive Filters within the Multilinear Forms. In Proceedings of the 2021 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 15–16 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Bakri, K.J.; Kuhn, E.V.; Seara, R.; Benesty, J.; Paleologu, C.; Ciochină, S. On the stochastic modeling of the LMS algorithm operating with bilinear forms. Digit. Signal Process. 2022, 122, 103359. [Google Scholar] [CrossRef]
- Dogariu, L.M.; Stanciu, C.L.; Elisei-Iliescu, C.; Paleologu, C.; Benesty, J.; Ciochină, S. Tensor-Based Adaptive Filtering Algorithms. Symmetry 2021, 13, 481. [Google Scholar] [CrossRef]
- Elisei-Iliescu, C.; Stanciu, C.; Paleologu, C.; Benesty, J.; Anghel, C.; Ciochină, S. Efficient recursive least-squares algorithms for the identification of bilinear forms. Digit. Signal Process. 2018, 83, 280–296. [Google Scholar] [CrossRef]
- Elisei-Iliescu, C.; Dogariu, L.M.; Paleologu, C.; Benesty, J.; Enescu, A.A.; Ciochină, S. A Recursive Least-Squares Algorithm for the Identification of Trilinear Forms. Algorithms 2020, 13, 135. [Google Scholar] [CrossRef]
- Fîciu, I.D.; Stanciu, C.L.; Anghel, C.; Elisei-Iliescu, C. Low-Complexity Recursive Least-Squares Adaptive Algorithm Based on Tensorial Forms. Appl. Sci. 2021, 11, 8656. [Google Scholar] [CrossRef]
- Stanciu, C.; Ciochină, S. A robust dual-path DCD-RLS algorithm for stereophonic acoustic echo cancellation. In Proceedings of the International Symposium on Signals, Circuits and Systems ISSCS2013, Iasi, Romania, 11–12 July 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Stanciu, C.; Anghel, C. Numerical properties of the DCD-RLS algorithm for stereo acoustic echo cancellation. In Proceedings of the 2014 10th International Conference on Communications (COMM), Bucharest, Romania, 29–31 May 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Benesty, J.; Paleologu, C.; Ciochina, S. Regularization of the RLS Algorithm. IEICE Trans. 2011, 94-A, 1628–1629. [Google Scholar] [CrossRef]
- Elisei-Iliescu, C.; Paleologu, C.; Benesty, J.; Stanciu, C.; Anghel, C.; Ciochină, S. Recursive Least-Squares Algorithms for the Identification of Low-Rank Systems. IEEE/Acm Trans. Audio Speech Lang. Process. 2019, 27, 903–918. [Google Scholar] [CrossRef]
- Elisei-Iliescu, C.; Paleologu, C.; Benesty, J.; Stanciu, C.; Anghel, C. A Regularized RLS Algorithm for the Identification of Third-Order Tensors. In Proceedings of the 2020 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 5–6 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Andrzej, C.; Rafal, Z.; Anh Huy, P.; Shun-ichi, A. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Dogariu, L.M.; Paleologu, C.; Benesty, J.; Stanciu, C.L.; Oprea, C.C.; Ciochină, S. A Kalman Filter for Multilinear Forms and Its Connection with Tensorial Adaptive Filters. Sensors 2021, 21, 3555. [Google Scholar] [CrossRef] [PubMed]
- Dogariu, L.M.; Ciochină, S.; Benesty, J.; Paleologu, C. System Identification Based on Tensor Decompositions: A Trilinear Approach. Symmetry 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, Y.V.; White, G.P.; Liu, J. Low-Complexity RLS Algorithms Using Dichotomous Coordinate Descent Iterations. IEEE Trans. Signal Process. 2008, 56, 3150–3161. [Google Scholar] [CrossRef] [Green Version]
- Stanciu, C.; Benesty, J.; Paleologu, C.; Gänsler, T.; Ciochină, S. A widely linear model for stereophonic acoustic echo cancellation. Signal Process. 2013, 93, 511–516. [Google Scholar] [CrossRef]
- Liu, J.; Zakharov, Y.V.; Weaver, B. Architecture and FPGA Design of Dichotomous Coordinate Descent Algorithms. IEEE Trans. Circuits Syst. I: Regul. Pap. 2009, 56, 2425–2438. [Google Scholar] [CrossRef]
- Elisei-Iliescu, C.; Stanciu, C.; Paleologu, C.; Benesty, J.; Anghel, C.; Ciochină, S. Robust variable-regularized RLS algorithms. In Proceedings of the 2017 Hands-free Speech Communications and Microphone Arrays (HSCMA), San Francisco, CA, USA, 1–3 March 2017; pp. 171–175. [Google Scholar] [CrossRef]
- Digital Network Echo Cancellers; ITU-T Recommendations G.168. Available online: https://www.itu.int/rec/T-REC-G.168/en (accessed on 21 August 2021).
- Stanciu, C.; Anghel, C.; Stanciu, L. Efficient FPGA implementation of the DCD-RLS algorithm for stereo acoustic echo cancellation. In Proceedings of the 2015 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 9–10 July 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Zakharov, Y.V.; Nascimento, V.H. DCD-RLS Adaptive Filters With Penalties for Sparse Identification. IEEE Trans. Signal Process. 2013, 61, 3198–3213. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fîciu, I.-D.; Stanciu, C.-L.; Elisei-Iliescu, C.; Anghel, C. Tensor-Based Recursive Least-Squares Adaptive Algorithms with Low-Complexity and High Robustness Features. Electronics 2022, 11, 237. https://doi.org/10.3390/electronics11020237
Fîciu I-D, Stanciu C-L, Elisei-Iliescu C, Anghel C. Tensor-Based Recursive Least-Squares Adaptive Algorithms with Low-Complexity and High Robustness Features. Electronics. 2022; 11(2):237. https://doi.org/10.3390/electronics11020237
Chicago/Turabian StyleFîciu, Ionuț-Dorinel, Cristian-Lucian Stanciu, Camelia Elisei-Iliescu, and Cristian Anghel. 2022. "Tensor-Based Recursive Least-Squares Adaptive Algorithms with Low-Complexity and High Robustness Features" Electronics 11, no. 2: 237. https://doi.org/10.3390/electronics11020237
APA StyleFîciu, I.-D., Stanciu, C.-L., Elisei-Iliescu, C., & Anghel, C. (2022). Tensor-Based Recursive Least-Squares Adaptive Algorithms with Low-Complexity and High Robustness Features. Electronics, 11(2), 237. https://doi.org/10.3390/electronics11020237