Data Rate Maximization in RIS-Assisted D2D Communication with Transceiver Hardware Impairments
Abstract
:1. Introduction
2. System Model and Problem Formulation
2.1. System Model
2.2. Problem Formulation
3. Joint Optimizing the Transmit Rate of the D2D Pair
3.1. Optimizing the Transmit Beamforming of BS
3.2. Optimizing the Phase Shifts of RIS
3.3. Optimizing the Transmit Power of the DTUE
3.4. Proposed Algorithm and Its Convergence
Algorithm 1 Proposed algorithm for data rate maximization problem |
1: Initialize feasible (, , ), and the tolerance parameter |
, the iterate number , the maximum iteration number . |
2: Obtain the value of = , where |
. |
3:Repeat |
4: . |
5: Based to (13), get the optimal with fixed . |
6: Given (, ), get the optimal by optimizing Problem (19). |
7: Exploiting fixed , get the D2D transmitter’s transmit power |
by optimizing Problem (21). |
8: With given , obtain the value of |
= . |
9: Until or . |
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doppler, K.; Rinne, M.; Wijting, C.; Ribeiro, C.B.; Hugl, K. Device-to-device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag. 2009, 47, 42–49. [Google Scholar] [CrossRef]
- Feng, D.; Lu, L.; Wu, Y.; Li, G.Y.; Feng, G.; Li, S. Device-to-Device Communications Underlaying Cellular Networks. IEEE Trans. Commun. 2013, 61, 3541–3551. [Google Scholar]
- Shah, S.W.H.; Rahman, M.M.U.; Mian, A.N.; Dobre, O.A.; Crowcroft, J. Effective Capacity Analysis of HARQ-Enabled D2D Communication in Multi-Tier Cellular Networks. IEEE Trans. Veh. Technol. 2021, 70, 9144–9159. [Google Scholar] [CrossRef]
- Su, H.; Zhang, X. Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks. IEEE J. Sel. Areas Commun. 2018, 26, 118–129. [Google Scholar] [CrossRef]
- Camps-Mur, D.; Garcia-Saavedra, A.; Serrano, P. Device-to-device communications with Wi-Fi Direct: Overview and experimentation. IEEE Wireless Commun. 2013, 20, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Yu, G.; Qu, F.; Zhang, Z. Device-to-device communications in unlicensed spectrum: Mode selection and resource allocation. IEEE Access 2016, 4, 4720–4729. [Google Scholar]
- Zhang, H.; Liao, Y.; Song, L. D2D-U: Device-to-device communications in unlicensed bands for 5G system. IEEE Trans. Wirel. Commun. 2017, 16, 3507–3519. [Google Scholar] [CrossRef]
- Lai, W.; Wang, Y.; Lin, H.; Li, J. Efficient Resource Allocation and Power Control for LTE-A D2D Communication With Pure D2D Model. IEEE Trans. Veh. Technol. 2020, 69, 3202–3216. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, S.; Qi, L.; Zhao, L.; Hanzo, L. Mobile-Traffic-Aware Offloading for Energy- and Spectral-Efficient Large-Scale D2D-Enabled Cellular Networks. IEEE Trans. Wireless Commun. 2019, 186, 3251–3264. [Google Scholar] [CrossRef]
- Yin, R.; Wu, Z.; Liu, S.; Wu, C.; Yuan, J.; Chen, X. Decentralized Radio Resource Adaptation in D2D-U Networks. IEEE Internet Things J. 2021, 8, 6720–6732. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, T.; Hu, Y.; Feng, H.; Hu, B. Two-Timescale Resource Allocation for Cooperative D2D Communication: A Matching Game Approach. IEEE Trans. Veh. Technol. 2021, 70, 543–557. [Google Scholar] [CrossRef]
- Doppler, K.; Yu, C.H.; Ribeiro, C.B.; Janis, P. Mode selection for device-to-device communication underlaying an LTE-advanced network. In Proceedings of the IEEE Wireless Communication and Networking Conference, Sydney, NSW, Australia, 18–21 April 2010; pp. 1–6. [Google Scholar]
- Min, H.; Seo, W.; Lee, J.; Park, S.; Hong, D. Reliability improvement using receive mode selection in the device-to-device uplink period underlaying cellular networks. IEEE Trans. Wireless Commun. 2011, 10, 413–418. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, D.; Zhao, C.; Li, G.Y.; Lei, M. Resource sharing of underlaying device-to-device and uplink cellular communications. IEEE Commun. Lett. 2013, 17, 1148–1151. [Google Scholar] [CrossRef]
- Yu, C.H.; Doppler, K.; Ribeiro, C.B.; Tirkkonen, O. Resource sharing optimization for device-to-device communication underlaying cellular networks. IEEE Trans. Wireless Commun. 2011, 10, 2752–2763. [Google Scholar]
- Mao, S.; Chu, X.; Wu, Q.; Liu, L.; Feng, J. Intelligent Reflecting Surface Enhanced D2D Cooperative Computing. IEEE Wireless Commun. Lett. 2021, 10, 1419–1423. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, D.; Xu, K.; Ma, W.; Xu, Y. Hardware Impairments Aware Transceiver for Full-Duplex Massive MIMO Relaying. IEEE Trans. Signal Process. 2015, 63, 6565–6580. [Google Scholar] [CrossRef] [Green Version]
- Afana, A.; Ikki, S. Analytical framework for space shift keying mimo systems with hardware impairments and co-channel interference. IEEE Commun. Lett. 2017, 21, 488–491. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A.; Pan, C.; Kourtessis, P.; Chatzinotas, S.; Senior, J.M. Intelligent Reflecting Surface-Assisted MU-MISO Systems with Imperfect Hardware: Channel Estimation, Beamforming Design. arXiv 2021, arXiv:2102.05333. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; He, C.; Chen, G.; Chambers, J.A. Sum-Rate Maximization in IRS-Assisted Wireless Power Communication Networks. IEEE Internet Things J. 2021, 8, 14959–14970. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Xu, W.; Elkashlan, M.; Nallanathan, A.; Hanzo, L. Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces. IEEE Trans. Wireless Commun. 2021, 19, 5218–5233. [Google Scholar] [CrossRef]
- Peng, Z.; Li, T.; Pan, C.; Ren, H.; Xu, W.; Renzo, M.D. Analysis and optimization for RIS-aided multi-pair communications relying on statistical CSI. IEEE Trans. Veh. Technol. 2021, 70, 3897–3901. [Google Scholar] [CrossRef]
- Shen, K.; Yu, W. Fractional Programming for Communication Systems-Part I: Power Control and Beamforming. IEEE Trans. Signal Process. 2018, 66, 2616–2630. [Google Scholar] [CrossRef] [Green Version]
- Boshkovska, E.; Ng, D.W.K.; Zlatanov, N.; Schober, R. Practical Non-Linear Energy Harvesting Model and Resource Allocation for SWIPT Systems. IEEE Commun. Lett. 2015, 19, 2082–2085. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Zhang, C.; Yang, Y.; Li, X.; He, C. Data Rate Maximization in RIS-Assisted D2D Communication with Transceiver Hardware Impairments. Electronics 2022, 11, 200. https://doi.org/10.3390/electronics11020200
Zheng H, Zhang C, Yang Y, Li X, He C. Data Rate Maximization in RIS-Assisted D2D Communication with Transceiver Hardware Impairments. Electronics. 2022; 11(2):200. https://doi.org/10.3390/electronics11020200
Chicago/Turabian StyleZheng, Hongxia, Chiya Zhang, Yatao Yang, Xingquan Li, and Chunlong He. 2022. "Data Rate Maximization in RIS-Assisted D2D Communication with Transceiver Hardware Impairments" Electronics 11, no. 2: 200. https://doi.org/10.3390/electronics11020200
APA StyleZheng, H., Zhang, C., Yang, Y., Li, X., & He, C. (2022). Data Rate Maximization in RIS-Assisted D2D Communication with Transceiver Hardware Impairments. Electronics, 11(2), 200. https://doi.org/10.3390/electronics11020200