Simulation and Optimization of Piezoelectric Micromachined Ultrasonic Transducer Unit Based on AlN
Abstract
:1. Introduction
2. Design and Modeling
2.1. Piezoelectric Effect
2.2. Model Building
3. Performance Simulation and Optimization Analysis
3.1. Modal Analysis
3.2. Frequency-Domain Analysis and Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roh, Y. Ultrasonic transducers for medical volumetric imaging. Jpn. J. Appl. Phys. 2014, 53, 6. [Google Scholar] [CrossRef]
- Davis, G.T. Piezoelectric polymer transducers. Adv. Dent. Res. 1987, 1, 45–49. [Google Scholar] [CrossRef]
- Tuziuti, T. Influence of sonication conditions on the efficiency of ultrasonic cleaning with flowing micrometer-sized air bubbles. Ultrason. Sonochem. 2016, 29, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Darmon, M.; Toullelan, G.; Dorval, V. An Experimental and Theoretical Comparison of 3D Models for Ultrasonic Non-Destructive Testing of Cracks: Part I, Embedded Cracks. Appl. Sci. 2022, 12, 19. [Google Scholar] [CrossRef]
- Nesvijski, E.G. Some aspects of ultrasonic testing of composites. Compos. Struct. 2000, 48, 151–155. [Google Scholar] [CrossRef]
- Ichiki, M.; Ashida, K.; Kitahara, T. Characterization of piezoelectric lead zirconate titanate from the viewpoint of transducer and power generator properties. Jpn. J. Appl. Phys. 2002, 41, 7080–7083. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kurosawa, M.K.; Endoh, A.; Takeuchi, S. Lead zirconate titanate thick-film ultrasonic transducer for 1 to 20 MHz frequency bands fabricated by hydrothermal polycrystal growth. Jpn. J. Appl. Phys. 2005, 44, 4342–4346. [Google Scholar] [CrossRef]
- Fei, C.L.; Liu, X.L.; Zhu, B.P.; Li, D.; Yang, X.F.; Yang, Y.T.; Zhou, Q.F. AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy 2018, 51, 146–161. [Google Scholar] [CrossRef]
- Hou, R.Z.; Hutson, D.; Kirk, K.J.; Fu, Y.Q. AlN thin film transducers for high temperature non-destructive testing applications. J. Appl. Phys. 2012, 111, 7. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, H.-Y.; Fung, S.; Boser, B.E.; Horsley, D.A. Short-range and high-resolution ultrasound imaging using an 8 MHz aluminum nitride PMUT array. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 140–143. [Google Scholar]
- Defay, E.; Ben Hassine, N.; Emery, P.; Parat, G.; Abergel, J.; Devos, A. Tunability of Aluminum Nitride Acoustic Resonators: A Phenomenological Approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 2516–2520. [Google Scholar] [CrossRef]
- Shin, E.; Yeo, H.G.; Yeon, A.; Jin, C.; Park, W.; Lee, S.C.; Choi, H. Development of a High-Density Piezoelectric Micromachined Ultrasonic Transducer Array Based on Patterned Aluminum Nitride Thin Film. Micromachines 2020, 11, 623. [Google Scholar] [CrossRef]
- Guedes, A.; Shelton, S.; Przybyla, R.; Izyumin, I.; Boser, B.; Horsley, D. Aluminum nitride pMUT based on a flexurally-suspended membrane. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 2062–2065. [Google Scholar]
- Karuthedath, C.B.; Sebastian, A.T.; Saarilahti, J.; Sillanpaa, T.; Pensala, T. Design and Fabrication of aluminum nitride piezoelectric micromachined ultrasonic transducers for air flow measurements. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 2489–2492. [Google Scholar]
- Singh, A.K.; Gorain, U.K. Development of vibrating disc piezoelectric gyroscope. Def. Sci. J. 2004, 54, 387–393. [Google Scholar] [CrossRef]
- Guan, Y.F. Performance Analysis of a Microfluidic Pump Based on Combined Actuation of the Piezoelectric Effect and Liquid Crystal Backflow Effect. Micromachines 2019, 10, 584. [Google Scholar] [CrossRef]
- Shao, W.W.; Li, P.Y.; Li, Z.J.; Xu, J.; Jiao, Y.; Cui, Y.Y. A micro dual-frequency transducer based on contour-extensional vibration and thickness mode. AIP Adv. 2018, 8, 105301. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.S.; Wang, Y.; Liu, Z.J.; Bian, J.C.; Chen, J.G. A Thickness-Mode High-Frequency Underwater Acoustic Transducer with a Low Sidelobe Level. Actuators 2021, 10, 226. [Google Scholar] [CrossRef]
- Farhat, G. Diagnostic Ultrasound Imaging: Inside Out; Thieme: Stuttgart, German, 2007. [Google Scholar]
- Codina, R.; Tuerk, O. Modal analysis of elastic vibrations of incompressible materials using a pressure-stabilized finite element method. Finite Elem. Anal. Des. 2022, 206, 103760. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, C.; Yan, Y.; Deng, L.; Zhu, W.; Liu, J. Modal Analysis and Condition Evaluation of Substructures for Simply Supported High-Speed Railway Bridge Based on a Simplified Model. J. Bridge Eng. 2022, 27, 04022058. [Google Scholar] [CrossRef]
- Meeker, T.R. Publication and Proposed Revision of ANSI/IEEE Standard 176-1987 “ANSI/IEEE Standard on Piezoelectricity”. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2002, 43, 717. [Google Scholar]
- Zhao, J.; Liu, G.; Huo, S.; Li, Z. Modes and modal analysis of three-dimensional (3D) structures based on the smoothed finite element methods (S-FEMs) using automatically generatable tetrahedral meshes. Eng. Anal. Bound. Elem. 2022, 140, 262–281. [Google Scholar] [CrossRef]
- Yue, S.; Hou, H. Method for estimating the radiated sound power of moving sound sources with linear array beamforming. Appl. Acoust. 2021, 182, 108191. [Google Scholar] [CrossRef]
- Varshney, K.; Rosa, J.E.; Shapiro, I.; Scott, D. Air-Infiltration Measurements in Buildings Using Sound Transmission Loss Through Small Apertures. Int. J. Green Energy 2013, 10, 482–493. [Google Scholar] [CrossRef]
- Grothues, T.M.; Davis, W.C. Sound pressure level weighting of the center of activity method to approximate sequential fish positions from acoustic telemetry. Can. J. Fish. Aquat. Sci. 2013, 70, 1359–1371. [Google Scholar] [CrossRef]
- Saliunas, D.; Volkovas, V.; Janusevicius, T. Study of measured indoor low-frequency noise levels resulting from outdoor noise sources, using a simplified physical model as well as empirical and FEM calculations. J. Vibroeng. 2016, 18, 2693–2713. [Google Scholar] [CrossRef]
- Wang, T.; Sawada, R.; Lee, C. A Piezoelectric micromachined ultrasonic transducer using piston-like membrane motion. IEEE Electron Device Lett. 2015, 36, 957–959. [Google Scholar] [CrossRef]
- Steinwolf, A. Random vibration testing beyond PSD limitations. Sound Vib. 2006, 40, 12–21. [Google Scholar]
- Ali, W.R.; Prasad, M. Design and Fabrication of Piezoelectric MEMS Sensor for Acoustic Measurements. Silicon 2022, 14, 6737–6747. [Google Scholar] [CrossRef]
- Ali, W.R.; Prasad, M. Piezoelectric Based MEMS Acoustic Sensor for Wide Frequency Applications. IEEE Sens. J. 2021, 21, 27352–27360. [Google Scholar] [CrossRef]
- Christensen, S.T.; Olhoff, N. Shape optimization of a loudspeaker diaphragm with respect to sound directivity properties. Control Cybern. 1998, 27, 177–198. [Google Scholar]
- Day, A.; Hansen, C.; Bennett, B. Duct Directivity Index Applications. Acoust. Aust. 2009, 37, 93–97. [Google Scholar]
- Ahmadi, A.; Mosallaei, H. Plasmonic nanoloop array antenna. Opt. Lett. 2010, 35, 3706–3708. [Google Scholar] [CrossRef]
- Dumur, E.; Satzinger, K.J.; Peairs, G.A.; Chou, M.H.; Bienfait, A.; Chang, H.S.; Conner, C.R.; Grebel, J.; Povey, R.G.; Zhong, Y.P.; et al. Unidirectional distributed acoustic reflection transducers for quantum applications. Appl. Phys. Lett. 2019, 114, 223501. [Google Scholar] [CrossRef]
- Zhu, N.; Ziolkowski, R.W. Photoconductive THz Antenna Designs with High Radiation Efficiency, High Directivity, and High Aperture Efficiency. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 721–730. [Google Scholar] [CrossRef]
Parameter | Clamped Structure/Optimized Structure | The Transducer |
---|---|---|
Maximum element size | Cref/fmax/6 | 11.3 µm |
Domain elements | 78,355/96,019 | - |
Boundary elements | 16,768/24,106 | - |
Edge elements | 1142/1606 | - |
Number of boundary layers | - | 1 |
Number of PML layers | - | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Ren, X.; Wan, H.; Jiang, X.; Liu, X. Simulation and Optimization of Piezoelectric Micromachined Ultrasonic Transducer Unit Based on AlN. Electronics 2022, 11, 2915. https://doi.org/10.3390/electronics11182915
Su X, Ren X, Wan H, Jiang X, Liu X. Simulation and Optimization of Piezoelectric Micromachined Ultrasonic Transducer Unit Based on AlN. Electronics. 2022; 11(18):2915. https://doi.org/10.3390/electronics11182915
Chicago/Turabian StyleSu, Xin, Xincheng Ren, Haoji Wan, Xingfang Jiang, and Xianyun Liu. 2022. "Simulation and Optimization of Piezoelectric Micromachined Ultrasonic Transducer Unit Based on AlN" Electronics 11, no. 18: 2915. https://doi.org/10.3390/electronics11182915
APA StyleSu, X., Ren, X., Wan, H., Jiang, X., & Liu, X. (2022). Simulation and Optimization of Piezoelectric Micromachined Ultrasonic Transducer Unit Based on AlN. Electronics, 11(18), 2915. https://doi.org/10.3390/electronics11182915