Improving the Energy Efficiency of Software-Defined Networks through the Prediction of Network Configurations
Abstract
:1. Introduction
- The definition of a novel algorithm to predict energy-efficient network configurations based on Logistic Regression (LR).
- The evaluation of the proposed LR-based algorithm over a realistic network topology.
- The comparison of the obtained results with energy-efficient ad hoc solutions.
2. Research Gap
3. A Review on the Power Consumption Problem
3.1. The Power Consumption Problem (PCP)
- is a binary variable whose value is equal to 1 if the link is active; 0 if the link is powered off.
- is a binary variable whose value is equal to 1 if the traffic demand of volume derived by flow is routed on the link ; 0 otherwise.
3.2. GA-Based Heuristic for Power Consumption Minimization
3.2.1. Chromosome Definition
3.2.2. Fitness Function
3.2.3. Biological Operators
4. System Model
5. Logistic Regression-Based Energy Efficient Algorithm
5.1. Clustering Process for Network Configurations Reduction
- If none of the original configurations are valid for all the TMs belonging to that cluster, the configuration with the highest number of active links is selected, and links are iteratively switched on until a valid configuration for all TMs is found.
- If there is an original configuration that is valid for all the TMs in that cluster, it is selected.
- If there is more than one original configuration that is valid for all the TMs in that cluster, the one with the highest number of links off is selected (highest energy savings).
5.2. Turning the PCP into a Supervised Classification Problem
6. Experimental Results
6.1. Simulation Set-Up
6.2. Performance Evaluation
7. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Idzikowski, F.; Chiaraviglio, L.; Cianfrani, A.; López Vizcaíno, J.; Polverini, M.; Ye, Y. A Survey on Energy-Aware Design and Operation of Core Networks. IEEE Commun. Surv. Tutor. 2016, 18, 1453–1499. [Google Scholar] [CrossRef]
- Bianzino, A.P.; Chaudet, C.; Rossi, D.; Rougier, J.L. A Survey of Green Networking Research. IEEE Commun. Surv. Tutor. 2012, 14, 3–20. Available online: https://www.researchgate.net/publication/50238130_A_Survey_of_Green_Networking_Research (accessed on 25 August 2022). [CrossRef]
- Strielkowski, W.; Firsova, I.; Lukashenko, I.; Raudeliūnienė, J.; Tvaronavičienė, M. Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions. Energies 2021, 14, 893. [Google Scholar] [CrossRef]
- Rume, T.; Islam, S.D.U. Environmental effects of COVID-19 pandemic and potential strategies of sustainability. Heliyon 2020, 6, e04965. [Google Scholar] [CrossRef] [PubMed]
- Cenedese, A.; Tramarin, F.; Vitturi, S. An Energy Efficient Ethernet Strategy Based on Traffic Prediction and Shaping. IEEE Trans. Commun. 2017, 65, 270–282. [Google Scholar] [CrossRef]
- Nedevschi, S.; Popa, L.; Iannaccone, G.; Ratnasamy, S.; Wetherall, D. Reducing Network Energy Consumption via Sleeping and Rate-Adaptation. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, NSDI’08, San Francisco, CA, USA, 16–18 April 2008; USENIX Association: Berkeley, CA, USA, 2008; pp. 323–336. [Google Scholar]
- Galán-Jiménez, J.; Gazo-Cervero, A. ELEE: Energy Levels-Energy Efficiency Tradeoff in Wired Communication Networks. IEEE Commun. Lett. 2013, 17, 166–168. [Google Scholar] [CrossRef]
- Musumeci, F.; Rottondi, C.; Nag, A.; Macaluso, I.; Zibar, D.; Ruffini, M.; Tornatore, M. An Overview on Application of Machine Learning Techniques in Optical Networks. IEEE Commun. Surv. Tutor. 2019, 21, 1383–1408. [Google Scholar] [CrossRef]
- Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Solano, F.E.; Rendón, O.M.C. A comprehensive survey on machine learning for networking: Evolution, applications and research opportunities. J. Internet Serv. Appl. 2018, 9, 16. [Google Scholar] [CrossRef]
- Assefa, B.G.; Özkasap, O. A survey of energy efficiency in SDN: Software-based methods and optimization models. J. Netw. Comput. Appl. 2019, 137, 127–143. [Google Scholar] [CrossRef]
- Galán-Jiménez, J.; Gazo-Cervero, A. Using bio-inspired algorithms for energy levels assessment in energy efficient wired communication networks. J. Netw. Comput. Appl. 2014, 37, 171–185. [Google Scholar] [CrossRef]
- Ahmad, S.; Jamil, F.; Ali, A.; Khan, E.; Ibrahim, M.; Whangbo, T. Effectively Handling Network Congestion and Load Balancing in Software-Defined Networking. CMC-Tech. Sci. Press 2021, 70, 1363–1379. [Google Scholar] [CrossRef]
- Ali, J.; Roh, B.h.; Lee, S. QoS improvement with an optimum controller selection for software-defined networks. PLoS ONE 2019, 14, e0217631. [Google Scholar] [CrossRef]
- Ali, J.; Roh, B. Quality of service improvement with optimal software-defined networking controller and control plane clustering. Comput. Mater. Contin 2021, 67, 849–875. [Google Scholar] [CrossRef]
- Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Wang, C.; Liu, Y. A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 393–430. [Google Scholar] [CrossRef]
- Chiaraviglio, L.; Mellia, M.; Neri, F. Reducing Power Consumption in Backbone Networks. In Proceedings of the 2009 IEEE International Conference on Communications, Dresden, Germany, 14–18 June 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-based Secure Energy Efficient Beamforming in Multibeam Satellite Systems. IEEE Trans. Aerosp. Electron. Syst. 2022, 1–4. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Wang, J.B.; de Cola, T.; Wang, J. Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks With Non-Orthogonal Multiple Access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; de Cola, T.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT With Rate-Splitting Multiple Access in Satellite and Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Naeem, F.; Tariq, M.; Poor, H.V. SDN-Enabled Energy-Efficient Routing Optimization Framework for Industrial Internet of Things. IEEE Trans. Ind. Inform. 2021, 17, 5660–5667. [Google Scholar] [CrossRef]
- Galán-Jiménez, J.; Polverini, M.; Cianfrani, A. Reducing the reconfiguration cost of flow tables in energy-efficient Software-Defined Networks. Comput. Commun. 2018, 128, 95–105. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, W.; Zhang, H.; Guo, W.; Wang, Z.; Tian, Y.; Yin, X.; Wu, J. Traffic Engineering in Hybrid Software Defined Network via Reinforcement Learning. J. Netw. Comput. Appl. 2021, 189, 103116. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, J.; Huang, K.; Wu, J. A Deep Reinforcement Learning Approach for Deploying SDN Switches in ISP Networks from the Perspective of Traffic Engineering. In Proceedings of the 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR), Taicang, Jiangsu, China, 6–8 June 2022; pp. 195–200. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Yi, B.; He, Q.; Huang, M. Deep Learning-Based Traffic Prediction for Energy Efficiency Optimization in Software-Defined Networking. IEEE Syst. J. 2021, 15, 5583–5594. [Google Scholar] [CrossRef]
- Chabarek, J.; Sommers, J.; Barford, P.; Estan, C.; Tsiang, D.; Wright, S. Power Awareness in Network Design and Routing. In Proceedings of the IEEE INFOCOM 2008—The 27th Conference on Computer Communications, Phoenix, AZ, USA, 13–18 April 2008; pp. 457–465. [Google Scholar] [CrossRef]
- OpenFlow Switch Specification. Version 1.5.1, Standard, Open Networking Foundation. 2015. Available online: https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf (accessed on 25 August 2022).
- Polverini, M.; Baiocchi, A.; Cianfrani, A.; Iacovazzi, A.; Listanti, M. The Power of SDN to Improve the Estimation of the ISP Traffic Matrix Through the Flow Spread Concept. IEEE J. Sel. Areas Commun. 2016, 34, 1904–1913. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Tung, A. Spatial Clustering Methods in Data Mining: A Survey. Data Min. Knowl. Discov.—DATAMINE 2001. Available online: https://www.researchgate.net/publication/238687113_Spatial_clustering_methods_in_data_mining_a_survey (accessed on 25 August 2022).
- Orlowski, S.; Pióro, M.; Tomaszewski, A.; Wessäly, R. SNDlib 1.0–Survivable Network Design Library. In Proceedings of the 3rd International Network Optimization Conference (INOC 2007), Spa, Belgium, 22–25 April 2007; Available online: http://sndlib.zib.de (accessed on 25 August 2022).
- Phillips, C.; Gazo-Cervero, A.; Galán-Jiménez, J.; Chen, X. Pro-active energy management for Wide Area Networks. In Proceedings of the IET International Conference on Communication Technology and Application (ICCTA 2011), Beijing, China, 14–16 October 2011; pp. 317–322. [Google Scholar]
ML Metrics | Computation Time | ||||
---|---|---|---|---|---|
Precision | Recall | F1-Score | Train. T | Exec. T | |
LR-EE | 0.84 | 0.84 | 0.84 | 7.67 s | 1.5 s |
LR-EE | 0.76 | 0.76 | 0.75 | 3.10 s | 1.9 s |
LR-EE | 0.75 | 0.74 | 0.73 | 3.20 s | 2.2 s |
LR-EE | 0.74 | 0.72 | 0.71 | 5.41 s | 4.2 s |
GA | - | - | - | - | 2.21 s |
Network Metrics | ||||||
---|---|---|---|---|---|---|
max_LL | avg_LL | avg_hops | max_hops | avg_gap | Feasibility | |
LR-EE | 0.26 | 0.99 | 3.60 | 10 | 11.25% | 97.25% |
LR-EE | 0.42 | 1 | 4.50 | 11 | −3.90% | 97.80% |
LR-EE | 0.45 | 1 | 4.65 | 11 | −5.96% | 97.10% |
LR-EE | 0.47 | 1 | 4.76 | 11 | −6.95% | 95.53% |
GA [22] | 0.45 | 1 | 4.14 | 11 | - | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Lázaro, M.; Herrera, J.L.; Berrocal, J.; Galán-Jiménez, J. Improving the Energy Efficiency of Software-Defined Networks through the Prediction of Network Configurations. Electronics 2022, 11, 2739. https://doi.org/10.3390/electronics11172739
Jiménez-Lázaro M, Herrera JL, Berrocal J, Galán-Jiménez J. Improving the Energy Efficiency of Software-Defined Networks through the Prediction of Network Configurations. Electronics. 2022; 11(17):2739. https://doi.org/10.3390/electronics11172739
Chicago/Turabian StyleJiménez-Lázaro, Manuel, Juan Luis Herrera, Javier Berrocal, and Jaime Galán-Jiménez. 2022. "Improving the Energy Efficiency of Software-Defined Networks through the Prediction of Network Configurations" Electronics 11, no. 17: 2739. https://doi.org/10.3390/electronics11172739
APA StyleJiménez-Lázaro, M., Herrera, J. L., Berrocal, J., & Galán-Jiménez, J. (2022). Improving the Energy Efficiency of Software-Defined Networks through the Prediction of Network Configurations. Electronics, 11(17), 2739. https://doi.org/10.3390/electronics11172739