Shielding Effectiveness Measurements of Drywall Panel Coated with Biochar Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Samples Preparation
2.2. Thermogravimetric Analysis
2.3. Shielding Effectiveness Definition and Measurement
3. Results
4. Discussion
5. Conclusions
- SE around 10 dB is obtained in the frequency band 1–18 GHz for two-layer panels for both vertical and horizontal polarization, whereas the SE of the drywall panel is almost 0 dB as expected.
- The SE for five-layer panels is greater than in the case of two-layer and it was found to be 17 dB at 1 GHz and 25 dB at 18 GHz.
- There is a good reproducibility of the measurements for the various samples.
- Then, one panel with two layers and one panel with five layers were considered and measured for skew incidence from 0 deg to 30 deg:
- In the case of the two-layer coating, the results are not very influenced by changing the incidence angle.
- In the case of the five-layer coating, results are slightly different for different angles of incidence.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jamshed, M.A.; Héliot, F.; Brown, T.W.C. A Survey on Electromagnetic Risk Assessment and Evaluation Mechanism for Future Wireless Communication Systems. IEEE J. Electromagn. RF Microw. Med. Biol. 2020, 4, 24–36. [Google Scholar] [CrossRef]
- Micheli, D.; Delfini, A.; Santoni, F.; Volpini, F.; Marchetti, M. Measurement of Electromagnetic Field Attenuation by Building Walls in the Mobile Phone and Satellite Navigation Frequency Bands. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 698–702. [Google Scholar] [CrossRef]
- Schelkunoff, S.A. The Impedance Concept and Its Application to Problems of Reflection, Refraction, Shielding and Power Absorption. Bell Syst. Tech. J. 1938, 17, 17–48. [Google Scholar] [CrossRef]
- Paul, C.R. Introduction to Electromagnetic Compatibility; John Wiley & Sons: New York, NY, USA, 2006; ISBN 978-0-471-75814-3. [Google Scholar]
- Chung, D.D.L. Carbon Materials for Structural Self-Sensing, Electromagnetic Shielding and Thermal Interfacing. Carbon 2012, 50, 3342–3353. [Google Scholar] [CrossRef]
- Chung, D.D.L. Electromagnetic Interference Shielding Effectiveness of Carbon Materials. Carbon 2001, 39, 279–285. [Google Scholar] [CrossRef]
- IEEE Std 299–1997, IEEE Std 299–2006 Revised; IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures. IEEE: Piscataway, NJ, USA, 2007; pp. 1–52. [CrossRef]
- Pang, H.; Xu, L.; Yan, D.-X.; Li, Z.-M. Conductive Polymer Composites with Segregated Structures. Prog. Polym. Sci. 2014, 39, 1908–1933. [Google Scholar] [CrossRef]
- Li, T.; Kirk, D.W.; Jia, C.Q. Monolithic Wood Biochar as Functional Material for Sustainability. Can. J. Chem. Eng. 2021, 99, 640–656. [Google Scholar] [CrossRef]
- Cataldi, P.; Heredia-Guerrero, J.A.; Guzman-Puyol, S.; Ceseracciu, L.; La Notte, L.; Reale, A.; Ren, J.; Zhang, Y.; Liu, L.; Miscuglio, M.; et al. Sustainable Electronics Based on Crop Plant Extracts and Graphene: A “Bioadvantaged” Approach. Adv. Sustain. Syst. 2018, 2, 1800069. [Google Scholar] [CrossRef] [Green Version]
- Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials. Waste Biomass Valoriz. 2016, 7, 201–235. [Google Scholar] [CrossRef]
- Indren, M.; Cheruvu, N.; Birzer, C.; Medwell, P. Biochar Production and Characterisation—A Field Study. In Proceedings of the 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 19–22 October 2017; pp. 1–5. [Google Scholar]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar Production by Sewage Sludge Pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Savi, P.; Yasir, M. Waveguide Measurements of Biochar Derived from Sewage Sludge. Electron. Lett. 2020, 56, 335–337. [Google Scholar] [CrossRef]
- Savi, P.; Yasir, M.; Bartoli, M.; Giorcelli, M.; Longo, M. Electrical and Microwave Characterization of Thermal Annealed Sewage Sludge Derived Biochar Composites. Appl. Sci. 2020, 10, 1334. [Google Scholar] [CrossRef] [Green Version]
- Vikrant, K.; Kim, K.-H.; Ok, Y.S.; Tsang, D.C.W.; Tsang, Y.F.; Giri, B.S.; Singh, R.S. Engineered/Designer Biochar for the Removal of Phosphate in Water and Wastewater. Sci. Total Environ. 2018, 616–617, 1242–1260. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Savi, P.; Quaranta, S.; Rovere, M.; Giorcelli, M.; Tagliaferro, A.; Rosso, C.; Jia, C.Q. Low-Cost Carbon Fillers to Improve Mechanical Properties and Conductivity of Epoxy Composites. Polymers 2017, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- di Summa, D.; Ruscica, G.; Savi, P.; Pelosato, R.; Sora, I.N. Biochar-Containing Construction Materials for Electromagnetic Shielding in the Microwave Frequency Region: The Importance of Water Content. Clean Technol. Environ. Policy 2021, 1–10. [Google Scholar] [CrossRef]
- Torsello, D.; Bartoli, M.; Giorcelli, M.; Rovere, M.; Arrigo, R.; Malucelli, G.; Tagliaferro, A.; Ghigo, G. High Frequency Electromagnetic Shielding by Biochar-Based Composites. Nanomaterials 2021, 11, 2383. [Google Scholar] [CrossRef]
- Yasir, M.; di Summa, D.; Ruscica, G.; Sora, I.N.; Savi, P. Shielding Properties of Cement Composites Filled with Commercial Biochar. Electronics 2020, 9, 819. [Google Scholar] [CrossRef]
- Savi, P.; Di Summa, D.; Sora, I.N.; Dassano, G.; Ruscica, G.; Pelosato, R. Drywall Coated with Biochar as Electromagnetic Interference Shielding Material. In Proceedings of the 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA), Honolulu, HI, USA, 9–13 August 2021; pp. 403–404. [Google Scholar]
- Akinyemi, B.A.; Adesina, A. Recent Advancements in the Use of Biochar for Cementitious Applications: A Review. J. Build. Eng. 2020, 32, 101705. [Google Scholar] [CrossRef]
- Maljaee, H.; Madadi, R.; Paiva, H.; Tarelho, L.; Ferreira, V.M. Incorporation of Biochar in Cementitious Materials: A Roadmap of Biochar Selection. Constr. Build. Mater. 2021, 283, 122757. [Google Scholar] [CrossRef]
- Natalio, F.; Corrales, T.P.; Feldman, Y.; Lew, B.; Graber, E.R. Sustainable Lightweight Biochar-Based Composites with Electromagnetic Shielding Properties. ACS Omega 2020, 5, 32490–32497. [Google Scholar] [CrossRef]
- Li, S.; Huang, A.; Chen, Y.-J.; Li, D.; Turng, L.-S. Highly Filled Biochar/Ultra-High Molecular Weight Polyethylene/Linear Low Density Polyethylene Composites for High-Performance Electromagnetic Interference Shielding. Compos. Part B Eng. 2018, 153, 277–284. [Google Scholar] [CrossRef]
- Yin, P.; Zhang, L.; Jiang, Y.; Zhang, Y.; Wang, J.; Feng, X.; Dai, J.; Tang, Y. Recycling of Waste Straw in Sorghum for Preparation of Biochar/(Fe,Ni) Hybrid Aimed at Significant Electromagnetic Absorbing of Low-Frequency Band. J. Mater. Res. Technol. 2020, 9, 14212–14222. [Google Scholar] [CrossRef]
- Gupta, S.; Tulliani, J.-M.; Kua, H.W. Carbonaceous Admixtures in Cementitious Building Materials: Effect of Particle Size Blending on Rheology, Packing, Early Age Properties and Processing Energy Demand. Sci. Total Environ. 2022, 807, 150884. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Wu, J.; AlShareedah, O.; Shi, X. Nanotechnology in Cement-Based Materials: A Review of Durability, Modeling, and Advanced Characterization. Nanomaterials 2019, 9, 1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, L.; Setty, M.; Karakkad, S.; Krishnan, S.T. Characterization of Carbon-Based Epoxy Nanocomposite Shield for Broadband EMI Shielding Application in X and Ku Bands. IEEE Trans. Nanotechnol. 2021, 20, 61–68. [Google Scholar] [CrossRef]
- Tamburrano, A.; Desideri, D.; Maschio, A.; Sarto, M.S. Coaxial Waveguide Methods for Shielding Effectiveness Measurement of Planar Materials Up to 18 GHz. IEEE Trans. Electromagn. Compat. 2014, 56, 1386–1395. [Google Scholar] [CrossRef]
- ASTM International—ASTM D4935-18—Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials|Engineering360. Available online: https://standards.globalspec.com/std/4472766/astm-d4935-18 (accessed on 10 May 2022).
- Munalli, D.; Dimitrakis, G.; Chronopoulos, D.; Greedy, S.; Long, A. Electromagnetic Shielding Effectiveness of Carbon Fibre Reinforced Composites. Compos. Part B Eng. 2019, 173, 106906. [Google Scholar] [CrossRef]
- Rudd, M.; Baum, T.C.; Ghorbani, K. Determining High-Frequency Conductivity Based on Shielding Effectiveness Measurement Using Rectangular Waveguides. IEEE Trans. Instrum. Meas. 2020, 69, 155–162. [Google Scholar] [CrossRef]
- Holloway, C.L.; Hill, D.A.; Ladbury, J.; Koepke, G.; Garzia, R. Shielding Effectiveness Measurements of Materials Using Nested Reverberation Chambers. IEEE Trans. Electromagn. Compat. 2003, 45, 350–356. [Google Scholar] [CrossRef]
- Gifuni, A. A Proposal to Improve the Standard on the Shielding Effectiveness Measurements of Materials and Gaskets in a Reverberation Chamber. IEEE Trans. Electromagn. Compat. 2017, 59, 394–403. [Google Scholar] [CrossRef]
- Vohra, N.; El-Shenawee, M. K- and W-Band Free-Space Characterizations of Highly Conductive Radar Absorbing Materials. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Kowal, M.; Kubal, S.; Zielinski, R.J. Measuring the Shielding Effectiveness of Large Textile Materials in an Anechoic Chamber. In Proceedings of the International Symposium on Electromagnetic Compatibility—EMC EUROPE, Rome, Italy, 17–21 September 2012; pp. 1–4. [Google Scholar]
- Hosseini, N.; Khatun, M.; Guo, C.; Du, K.; Ozdemir, O.; Matolak, D.W.; Guvenc, I.; Mehrpouyan, H. Attenuation of Several Common Building Materials: Millimeter-Wave Frequency Bands 28, 73, and 91 GHz. IEEE Antennas Propag. Mag. 2021, 63, 40–50. [Google Scholar] [CrossRef]
- Matolak, D.W.; Mohsen, M.; Liu, J. Building Material Attenuations at 5 GHz and at MmWave Frequencies 30 GHz and 90 GHz. In Proceedings of the 2021 IEEE 21st Annual Wireless and Microwave Technology Conference (WAMICON), Sand Key, FL, USA, 28–29 April 2021; pp. 1–4. [Google Scholar]
- Du, K.; Ozdemir, O.; Erden, F.; Guvenc, I. Sub-Terahertz and MmWave Penetration Loss Measurements for Indoor Environments. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Jebramcik, J.; Wagner, J.; Pohl, N.; Rolfes, I.; Barowski, J. Millimeter Wave Material Measurements for Building Entry Loss Models Above 100 GHz. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Düsseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar]
- Giorcelli, M.; Savi, P.; Delogu, A.; Miscuglio, M.; Yahya, Y.M.H.; Tagliaferro, A. Microwave Absorption Properties in Epoxy Resin Multi Walled Carbon Nanotubes Composites. In Proceedings of the 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), Torino, Italy, 9–13 September 2013; pp. 1139–1141. [Google Scholar]
- Khushnood, R.A.; Ahmad, S.; Savi, P.; Tulliani, J.-M.; Giorcelli, M.; Ferro, G.A. Improvement in Electromagnetic Interference Shielding Effectiveness of Cement Composites Using Carbonaceous Nano/Micro Inerts. Constr. Build. Mater. 2015, 85, 208–216. [Google Scholar] [CrossRef]
- Singh, A.P.; Gupta, B.K.; Mishra, M.; Govind; Chandra, A.; Mathur, R.B.; Dhawan, S.K. Multiwalled Carbon Nanotube/Cement Composites with Exceptional Electromagnetic Interference Shielding Properties. Carbon 2013, 56, 86–96. [Google Scholar] [CrossRef]
Materials | Thickness (mm) | SE (dB) 2 GHz | SE (dB) 8–12 GHz | Ref |
---|---|---|---|---|
Gypsum based drywall coated with biochar | 10 mm drywall panel + 1 mm 5-layer biochar | 18 | 21 | This work |
Gypsum−40% w/w biochar composites with 2 cardboard | 2.5 mm cardboard + 10 mm composite + 2.5 mm cardboard | 10 | 20 | [24] |
Composites, biochar 0.5% w/w of cement | 10 mm | 6 | 9 | [43] |
Composites, biochar 18% w/w of cement | 4 mm | n.a. | 19–23 | [21] |
Composites, 30% v/v biochar/cement | 30 mm | 9 | 25 (@ 8 GHz) | [19] |
Composites, 15% w/w multi-walled carbon nanotube/cement | 2 mm | n.a. | 27 | [44] |
Composites, 80% w/w biochar/ultra-high molecular weight polyethylene (UHMWPE)/linear low density polyethylene (LLDPE) | 3 mm | 49 (@ 1.5 GHz) | n.a. | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savi, P.; Ruscica, G.; di Summa, D.; Natali Sora, I. Shielding Effectiveness Measurements of Drywall Panel Coated with Biochar Layers. Electronics 2022, 11, 2312. https://doi.org/10.3390/electronics11152312
Savi P, Ruscica G, di Summa D, Natali Sora I. Shielding Effectiveness Measurements of Drywall Panel Coated with Biochar Layers. Electronics. 2022; 11(15):2312. https://doi.org/10.3390/electronics11152312
Chicago/Turabian StyleSavi, Patrizia, Giuseppe Ruscica, Davide di Summa, and Isabella Natali Sora. 2022. "Shielding Effectiveness Measurements of Drywall Panel Coated with Biochar Layers" Electronics 11, no. 15: 2312. https://doi.org/10.3390/electronics11152312
APA StyleSavi, P., Ruscica, G., di Summa, D., & Natali Sora, I. (2022). Shielding Effectiveness Measurements of Drywall Panel Coated with Biochar Layers. Electronics, 11(15), 2312. https://doi.org/10.3390/electronics11152312