Energy Efficient Hybrid Relay-IRS-Aided Wireless IoT Network for 6G Communications
Abstract
:1. Introduction
- To the best of our knowledge, we are the first to examine and compare the impact of relay-aided, IRS-aided, and novel hybrid relay-IRS-aided wireless IoT networks for 6G communications in terms of EE;
- We examine EE as a function of user distance and various SNR values. The EE with fixed and varying numbers of IRS elements is analysed for the proposed IoT network;
- Numerical results show that the proposed hybrid relay-IRS-assisted IoT network outperforms both the conventional relay and IRS-aided wireless IoT networks;
- Numerical results further validate that multiple IRS blocks can be deployed randomly with relays to increase the EE of the hybrid relay-IRS-aided IoT network instead of using multiple relays to cover longer distances.
2. System Model
3. Energy Efficiency Performance Analysis
3.1. Achievable Rate of Relay-Aided IoT Network
3.2. Achievable Rate of IRS-Aided IoT Network
3.3. Total Power Consumption of IRS and Relay-Aided IoT Network
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AF | amplify-and-forward |
BS | base station |
BRB | branch and reduced bound |
DF | decode-and-forward |
EE | energy efficiency |
IRS | intelligent reflecting surfaces |
IoT | internet of things |
KKT | Kaursh–Kuhn–Tucker |
MM | majorization–minimization |
MIMO | multiple-input–multiple-output |
NOMA | non-orthogonal multiple access |
OFDM | orthogonal frequency division multiplexing |
QoS | quality of service |
SDR | semi-definite relaxation |
SNR | signal-to-noise ratio |
SISO | single-input–single-output |
WET | wireless energy transfer |
WIT | wireless information transfer |
References
- Wu, Q.; Li, G.Y.; Chen, W.; Ng, D.W.K.; Schober, R. An overview of sustainable green 5G networks. IEEE Wirel. Commun. 2017, 24, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, X. Rate and energy efficiency improvements for 5G-based IoT with simultaneous transfer. IEEE Internet Things J. 2018, 6, 5971–5980. [Google Scholar] [CrossRef]
- Qaim, W.B.; Ometov, A.; Molinaro, A.; Lener, I.; Campolo, C.; Lohan, E.S.; Nurmi, J. Towards energy efficiency in the internet of wearable things: A systematic review. IEEE Access 2020, 8, 175412–175435. [Google Scholar] [CrossRef]
- Buzzi, S.; Chih-Lin, I.; Klein, T.E.; Poor, H.V.; Yang, C.; Zappone, A. A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE J. Sel. Areas Commun. 2016, 34, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Baniata, M.; Reda, H.T.; Chilamkurti, N.; Abuadbba, A. Energy-efficient hybrid routing protocol for IoT communication systems in 5G and beyond. Sensors 2021, 21, 537. [Google Scholar] [CrossRef]
- Kaur, N.; Sood, S.K. An energy-efficient architecture for the Internet of Things (IoT). IEEE Syst. J. 2015, 11, 796–805. [Google Scholar] [CrossRef]
- Hosen, A.S.; Sharma, P.K.; Cho, G.H. MSRM-IoT: A reliable resource management for cloud, fog and mist assisted IoT networks. IEEE Internet Things J. 2021, 9, 2527–2537. [Google Scholar] [CrossRef]
- Salman, L.; Salman, S.; Jahangirian, S.; Abraham, M.; German, F.; Blair, C.; Krenz, P. Energy efficient IoT-based smart home. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 526–529. [Google Scholar]
- Zhai, D.; Zhang, R.; Cai, L.; Li, B.; Jiang, Y. Energy-efficient user scheduling and power allocation for NOMA-based wireless networks with massive IoT devices. IEEE Internet Things J. 2018, 5, 1857–1868. [Google Scholar] [CrossRef]
- Hosen, A.; Cho, G.H. An energy centric cluster-based routing protocol for wireless sensor networks. Sensors 2018, 18, 1520. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, Y.; Rebelatto, J.L.; Uchoa-Filho, B.F.; Vucetic, B. Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Trans. Signal Process. 2015, 63, 1700–1711. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Chen, H.; Zhang, R. Bidirectional wireless information and power transfer with a helping relay. IEEE Commun. Lett. 2016, 20, 862–865. [Google Scholar] [CrossRef]
- Chinnadurai, S.; Selvaprabhu, P.; Jeong, Y.; Jiang, X.; Lee, M.H. Worst-case energy efficiency maximization in a 5G Massive MIMO-NOMA system. Sensors 2017, 17, 2139. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.H.A.; Chinnadurai, S.; Selvaprabhu, P.; Lee, M.H. Energy Efficiency of 5G Cellular Networks for Base Station’s Switching System; Nova Science Publishers: Hauppauge, NY, USA, 2017. [Google Scholar]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Chu, Z.; Zhou, F.; Zhu, Z.; Hu, R.Q.; Xiao, P. Wireless powered sensor networks for Internet of Things: Maximum throughput and optimal power allocation. IEEE Internet Things J. 2017, 5, 310–321. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Z.; Chu, Z.; Sun, G.; Hao, W.; Liu, P.; Lee, I. Resource Allocation for Intelligent Reflecting Surface Assisted Wireless Powered IoT Systems with Power Splitting. IEEE Trans. Wirel. Commun. 2021, 21, 2987–2998. [Google Scholar] [CrossRef]
- Wu, J.; Shim, B. Power minimization of intelligent reflecting surface-aided uplink iot networks. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar]
- Zhang, T.; Wang, S.; Zhuang, Y.; You, C.; Wen, M.; Wu, Y.C. Reconfigurable Intelligent Surface Assisted OFDM Relaying: Subcarrier Matching with Balanced SNR. arXiv 2022, arXiv:2203.01589. [Google Scholar]
- Huang, C.; Alexandropoulos, G.C.; Zappone, A.; Debbah, M.; Yuen, C. Energy efficient multi-user MISO communication using low resolution large intelligent surfaces. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Han, Y.; Li, N.; Liu, Y.; Zhang, T.; Tao, X. Artificial Noise Aided Secure NOMA Communications in STAR-RIS Networks. IEEE Wirel. Commun. Lett. 2022, 11, 1191–1195. [Google Scholar] [CrossRef]
- Huang, C.; Chen, G.; Wong, K.K. Multi-Agent Reinforcement Learning-Based Buffer-Aided Relay Selection in IRS-Assisted Secure Cooperative Networks. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4101–4112. [Google Scholar] [CrossRef]
- Huang, C.; Chen, G.; Gong, Y.; Wen, M.; Chambers, J.A. Deep reinforcement learning-based relay selection in intelligent reflecting surface assisted cooperative networks. IEEE Wirel. Commun. Lett. 2021, 10, 1036–1040. [Google Scholar] [CrossRef]
- Xiao, Y.; Hao, L.; Ma, Z.; Ding, Z.; Zhang, Z.; Fan, P. Forwarding strategy selection in dual-hop NOMA relaying systems. IEEE Commun. Lett. 2018, 22, 1644–1647. [Google Scholar] [CrossRef]
- Abdullah, Z.; Chen, G.; Lambotharan, S.; Chambers, J.A. A hybrid relay and intelligent reflecting surface network and its ergodic performance analysis. IEEE Wirel. Commun. Lett. 2020, 9, 1653–1657. [Google Scholar] [CrossRef]
- Sun, Q.; Qian, P.; Duan, W.; Zhang, J.; Wang, J.; Wong, K.K. Ergodic Rate Analysis and IRS Configuration for Multi-IRS Dual-Hop DF Relaying Systems. IEEE Commun. Lett. 2021, 25, 3224–3228. [Google Scholar] [CrossRef]
- Ying, X.; Demirhan, U.; Alkhateeb, A. Relay aided intelligent reconfigurable surfaces: Achieving the potential without so many antennas. arXiv 2020, arXiv:2006.06644. [Google Scholar]
- Abdullah, Z.; Chen, G.; Lambotharan, S.; Chambers, J.A. Optimization of intelligent reflecting surface assisted full-duplex relay networks. IEEE Wirel. Commun. Lett. 2020, 10, 363–367. [Google Scholar] [CrossRef]
- Björnson, E.; Özdogan, Ö.; Larsson, E.G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wirel. Commun. Lett. 2019, 9, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Laneman, J.N.; Tse, D.N.; Wornell, G.W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Access, E. Further advancements for E-UTRA physical layer aspects. 3GPP Tech. Specif. TR 2010, 36, V2. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajak, S.; Muniraj, I.; Elumalai, K.; Hosen, A.S.M.S.; Ra, I.-H.; Chinnadurai, S. Energy Efficient Hybrid Relay-IRS-Aided Wireless IoT Network for 6G Communications. Electronics 2022, 11, 1900. https://doi.org/10.3390/electronics11121900
Rajak S, Muniraj I, Elumalai K, Hosen ASMS, Ra I-H, Chinnadurai S. Energy Efficient Hybrid Relay-IRS-Aided Wireless IoT Network for 6G Communications. Electronics. 2022; 11(12):1900. https://doi.org/10.3390/electronics11121900
Chicago/Turabian StyleRajak, Shaik, Inbarasan Muniraj, Karthikeyan Elumalai, A. S. M. Sanwar Hosen, In-Ho Ra, and Sunil Chinnadurai. 2022. "Energy Efficient Hybrid Relay-IRS-Aided Wireless IoT Network for 6G Communications" Electronics 11, no. 12: 1900. https://doi.org/10.3390/electronics11121900
APA StyleRajak, S., Muniraj, I., Elumalai, K., Hosen, A. S. M. S., Ra, I.-H., & Chinnadurai, S. (2022). Energy Efficient Hybrid Relay-IRS-Aided Wireless IoT Network for 6G Communications. Electronics, 11(12), 1900. https://doi.org/10.3390/electronics11121900