High-Performance RF Balanced Microstrip Mixer Configuration for Cryogenic and Room Temperatures
Abstract
:1. Introduction
2. Balanced Mixer Structure
3. Simulations
3.1. Theory
3.2. Simulation Results
4. Room Temperature Experimental Results
5. Experimental Results at 77 K
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Algumaei, M.Y.; Shairi, N.A.; Zakaria, Z.; Ibrahim, I.M. Review of Mixer and Balun Designs for UWB Applications. Int. J. Appl. Eng. Res. 2017, 12, 6514–6522. [Google Scholar]
- Vasjanov, A.; Barzdenas, V. A Methodology Improving Off-Chip, Lumped RF Impedance Matching Network Response Accuracy. Electronics 2018, 7, 188. [Google Scholar] [CrossRef] [Green Version]
- Pozar, M.D. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 147–149, 272, 625–627, 646–649, 654. [Google Scholar]
- Ji, D.; Zhang, B.; Yang, Y.; Niu, Z.; Yong, F.; Chen, X. A 220-GHz Third-Harmonic Mixer Based on Balanced Structure and Hybrid Transmission Line. IEEE Access 2019, 7, 50007–50011. [Google Scholar] [CrossRef]
- Mahmou, R.K.; Faitah, K. Designing of RF Single Balanced Mixer with a 65nm CMOS Technology Dedicated to Low Power Consumption Wireless Applications. IJCSI Int. J. Comput. Sci. Issues 2012, 9, 358–363. [Google Scholar]
- Na, D.; Kim, T.W. A 1.2 V, 0.87–3.7 GHz Wideband Low-Noise Mixer Using a Current Mirror for Multiband Application. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 91–93. [Google Scholar] [CrossRef]
- Bai, D.D.; Du, J.; He, Y.S. Characterizations of High-Temperature Superconducting Step-Edge Josephson Junction Mixer. IEEE Trans. Appl. Supercond. 2014, 24, 1501404. [Google Scholar]
- Mohsenpour, M.; Saavedra, C.E. Method to Improve the Linearity of Active Commutating Mixers Using Dynamic Current Injection. IEEE Trans. Microw. Theory Tech. 2016, 64, 4624–4631. [Google Scholar] [CrossRef]
- Kumar, S.; Saraiyan, S.; Dubey, S.K.; Pal, S.; Islam, A. A 2.4 GHz double balanced downconversion mixer with improved conversion gain in 180-nm technology. Microsyst. Technol. 2020, 26, 1721–1731. [Google Scholar] [CrossRef]
- Xiangning, F.; Chisheng, Z.; Lei, Z. A 2.4 GHz RF CMOS up-conversion mixer for wireless sensor networks nodes. In Proceedings of the 2009 International Conference on Wireless Communications & Signal Processing, Nanjing, China, 13–15 November 2009; pp. 1–5. [Google Scholar]
- Oh, H.; Kim, J.; Lim, J.; Kim, C. A 2.4-GHz High Conversion Gain Passive Mixer Using Q-Boosted π-Type LCL Matching Networks in 90-nm CMOS. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 736–738. [Google Scholar] [CrossRef]
- Kalamani, C. Design of Differential LNA and Double Balanced Mixer using 180 nm CMOS Technology. Microprocess. Microsyst. 2019, 71, 102850. [Google Scholar] [CrossRef]
- Kashani, M.H.; Asghari, M.; Yavari, M.; Mirabbasi, S. A +7.6 dBm IIP3 2.4-GHz Double-Balanced Mixer With 10.5 dB NF in 65-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3214–3218. [Google Scholar] [CrossRef]
- Feng, W.; Che, W.; Xue, Q. The Proper Balance: Overview of Microstrip Wideband Balance Circuits with Wideband Common Mode Suppression. IEEE Microw. Mag. 2015, 16, 55–68. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, X. Design of Balanced Mixer with 180 Degrees Hybrid Network Based on Cruciform Coupler. In Proceedings of the 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT), HangZhou, China, 5–7 September 2018; pp. 1–3. [Google Scholar]
- Lalbakhsh, A.; Alizadeh, S.M.; Ghaderi, A.; Golestanifar, A.; Mohamadzade, B.; Jamshidi, M.; Mandal, K.; Mohyuddin, W. A Design of a Dual-Band Bandpass Filter Based on Modal Analysis for Modern Communication Systems. Electronics 2020, 9, 1770. [Google Scholar] [CrossRef]
- Ahmadi, A.; Makki, S.V.; Lalbakhsh, A.; Majidifar, S. A Novel Dual-Mode Wideband Band Pass Filter. Appl. Comput. Electromagn. Soc. J. 2014, 29, 735–742. [Google Scholar]
- Lalbakhsh, A.; Jamshidi, M.; Siahkamari, H.; Ghaderi, A.; Golestanifar, A.; Richard, L.; Talla, J.; Simorangkir, R.B.V.B.; Mandal, K. A compact lowpass filter for satellite communication systems based on transfer function analysis. Int. J. Electron. Commun. 2020, 124, 153318. [Google Scholar] [CrossRef]
- Dehghani, K.; Karimi, G.; Lalbakhsh, A.; Maki, S.V. Design of lowpass filter using novel steppedimpedance resonator. Electron. Lett. 2014, 50, 37–39. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Ghaderi, A.; Mohyuddin, W.; Simorangkir, R.B.V.B.; Bayat-Makou, N.; Ahmad, M.S.; Lee, G.H.; Kim, K.W. A Compact C-Band Bandpass Filter with an Adjustable Dual-Band Suitable for Satellite Communication Systems. Electronics 2020, 9, 1088. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Karimi, G.; Sabaghi, F. Triple mode spiral wideband bandpass filter using symmetric dual-line coupling. Electron. Lett. 2017, 53, 795–797. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Lotfi, A.; Naser-Moghadasi, M. Microstrip Hairpin Bandpass Filter Using Modified Minkowski Fractal-Shape for Suppression of Second Harmonic. IEICE Trans. Electron. 2012, 95, 378–381. [Google Scholar] [CrossRef]
- Lotfi, A.; Lalbakhsh, A. Improved microstrip hairpin-line bandpass filters for spurious response suppression. Electron. Lett. 2012, 48, 858–859. [Google Scholar] [CrossRef]
- Markiewicz, T.G.; Wesołowski, K.W. Cryogenic Cooling in Wireless Communications. Entropy 2019, 21, 832. [Google Scholar] [CrossRef] [Green Version]
- Narahashi, S.; Satoh, K.; Kawai, K.; Koizumi, D. Cryogenic Receiver Front-End for Mobile Base Stations. In Proceedings of the 2008 China-Japan Joint Microwave Conference, Shanghai, China, 10–12 September 2008; pp. 619–622. [Google Scholar]
- Gawande, R.; Bradley, R.; Langston, G. Low noise, 0.4–3 GHz cryogenic receiver for radio astronomy. Rev. Sci. Instrum. 2014, 85, 104710. [Google Scholar] [CrossRef] [PubMed]
- Holdengreber, E.; Mizrahi, M.; Glassner, E.; Koral, Y.; Schacham, S.; Farber, E. Phase shift combiner for multi-channel VHF communication. Int. J. Microw. Wirel. Technol. 2017, 9, 79–83. [Google Scholar] [CrossRef]
- Holdengreber, E.; Mizrahi, M.; Farber, E. Quasi-dynamical multi-channel coupler based on high temperature superconducting films. In Proceedings of the IEEE 27th Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, 14–17 November 2012; pp. 1–4. [Google Scholar]
- Mizrahi, M.; Glassner, E.; Bachar, N.; Farber, E.; Abramovich, A.; Koral, Y. VHF multi-channel coupler for RF communication. In Proceedings of the 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, Tel Aviv, Israel, 9–11 September 2009. [Google Scholar]
- Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem AS, M.; Koziel, S. Design of a Compact Planar Transmission Line for Miniaturized Rat-Race Coupler with Harmonics Suppression. IEEE Access 2021, 9, 129207–129217. [Google Scholar] [CrossRef]
- Abdipour, A.; Honari, M.M.; Mousavi, P.; Mirzavand, R. Class of miniaturised/arbitrary power division ratio couplers with improved design flexibility. IET Microw. Antennas Propag. 2015, 9, 1066–1073. [Google Scholar]
- MACOM. United States. Available online: https://www.macom.com/products/product-detail/MGS903 (accessed on 1 September 2021).
- Hu, S.; Hu, Y.; Zheng, H.; Zhu, W.; Gao, Y.; Zhang, X. A Compact 3.3–3.5 GHz Filter Based on Modified Composite Right-/Left-Handed Resonator Units. Electronics 2020, 9, 427. [Google Scholar] [CrossRef] [Green Version]
- Karimi, G.; Lalbakhsh, A.; Dehghani, K.; Siahkamari, H. Analysis of Novel Approach to Design of Ultra-wide Stopband Microstrip Low-Pass Filter Using Modified U-Shaped Resonator. Etri J. 2015, 37, 945–950. [Google Scholar] [CrossRef]
- Karimi, G.; Amirian, M.; Lalbakhsh, A.; Ranjbar, M. A new microstrip coupling system for realization of a differential dual-band bandpass filter. Int. J. Electron. Commun. 2019, 99, 186–192. [Google Scholar] [CrossRef]
- Huhtinen, H.; Ulriksson, J.; Malmivirta, M.; Järvinen, J.; Jha, R.; Awana, V.P.S.; Vasiliev, S.; Paturi, P. Deposition of YBCO Thin Films in View of Microwave Applications. IEEE Trans. Appl. Supercond. 2017, 27, 1–5. [Google Scholar] [CrossRef]
- Holdengreber, E.; Moshe, A.G.; Mizrahi, M.; Khavkin, V.; Schacham, S.E.; Farber, E. High sensitivity high Tc superconducting Josephson junction antenna for 200 GHz detection. J. Electromagnet. Wave. 2019, 33, 193–203. [Google Scholar] [CrossRef]
- Holdengreber, E.; Moshe, A.G.; Vigneswaran, D.; Schacham, S.E.; Farber, E. Temperature Effect on Selectivity of HTSC Josephson Junction Detector. IEEE Trans. Appl. Supercond. 2021, 31, 1102004. [Google Scholar] [CrossRef]
- Holdengreber, E.; Schacham, E.; Farber, E. Impedance mismatch elimination for improved THz detection by superconducting Josephson junctions. In Proceedings of the Antennas and Propagation Conference 2019 (APC-2019), Birmingham, UK, 11–12 November 2019; pp. 1–3. [Google Scholar]
- Holdengreber, E.; Gao, X.; Mizrahi, M.; Schacham, S.E.; Farber, E. Superior impedance matching of THz antennas with HTSC josephson junctions. Supercond. Sci. Technol. 2019, 32, 074006. [Google Scholar] [CrossRef]
- Romanofsky, R.R. An X-Band Mixer Engineered for 77-K Operation; National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program: Washington, DC, USA, 1995. [Google Scholar]
- Watkins-Johnson. United States. Available online: https://www.abex.co.uk/esales/microwave/magnum_microwave/mixer/mo74p-2/000/index.php (accessed on 21 September 2021).
- Nguyen, N.T.P.; Van Tran, S.; Nguyen, D.B.; Mai, L. Design and implement a single balanced mixer at S band. In Proceedings of the 2015 International Conference on Advanced Technologies for Communications (ATC), Nha Trang, Vietnam, 14–16 October 2015; pp. 637–641. [Google Scholar]
- Sudow, M.; Andersson, K.; Nilsson, P.; Rorsman, N. A highly linear double balanced Schottky diode S-band mixer. IEEE Microw. Wirel. Compon. Lett. 2006, 16, 336–338. [Google Scholar] [CrossRef]
- Zhang, T.; Du, J.; Guo, Y.J. An 8–10-GHz Low-Loss Image-Reject HTS Mixer Based on Cascaded Josephson Junctions. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 945–948. [Google Scholar] [CrossRef]
- Holdengreber, E.; Mizrahi, M.; Glassner, E.; Dahan, Y.; Castro, H.; Farber, E. Design and implementation of an RF coupler based on YBCO superconducting films. IEEE Trans. Appl. Supercond. 2015, 25, 1500905. [Google Scholar] [CrossRef]
- Dahan, Y.; Holdengreber, E.; Mizrahi, M.; Schacham, S.E.; Farber, E. Multichannel Transmitting System Based on High Temperature Superconducting Phase Shifter. IEEE Trans. Appl. Supercond. 2020, 30, 3500506. [Google Scholar] [CrossRef]
- Dahan, Y.; Holdengreber, E.; Glassner, E.; Sorkin, O.; Schacham, S.E.; Farber, E. Measurement of Electrical Properties of Superconducting YBCO Thin Films in the VHF Range. Materials 2021, 14, 3360. [Google Scholar] [CrossRef]
Parameter | Value [mm] |
---|---|
1.27 | |
1.28 | |
1.32 |
Ref | Material or App -Form | Mixer Type and Structure | Frequency Range | Measure. Temp. | IF GHz | RF GHz | CL | Isolation RF-IF | Isolation LO-IF |
---|---|---|---|---|---|---|---|---|---|
[41] | Al2O3–Si diode planar circuit | Single balanced topology, M/A-COM MA40132 | X-band | 77 K | 1.15–1.3 | 7.1–7.25 | 3.2 dB at 1 dBm | ~37 dB | ~45 dB |
[41,42] | Schottky ring quad Si diodes | Watkins-Johnson WJ-M80LC | X-band | 77 K | ~1 | ~7 | 7 dB at 5 dBm | - | ~35 dB |
[43] | Rogers substrate PCB Cu planar circuit | Single Balanced mixer (180°) (SMS7621-005LF) | S-band | 300 K | 0.03 | 2.9 | 7 dB at 2 dBm | >25 dB | >30 dB |
[44] | SiC MMIC Schottky diodes | Double balanced mixer | S-band | 300 K | 0.1, 0.3, 0.5 | 3.3 | 12 dB at 23 dBm | >7 dB | >30 dB |
[45] | YBCO on MgO substrate | Josephson Junction | X-band | 77 K | 2.8 | 10 | ~5 dB at 30 dBm | >30 dB | - |
This work | Cu on RT6002 substrate | Schottky diode GaAs (MGS903) | S-band | 300 K | 0.1 | 2 | 6.56 dB at 7 dBm | >35 dB | >35 dB |
This work | Cu on RT6002 substrate | Schottky diode GaAs (MGS903) | S-band | 77 K | 0.1 | 2 | 9.97 dB at 7 dBm | >50 dB | >40 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Citron, N.; Holdengreber, E.; Sorkin, O.; Schacham, S.E.; Farber, E. High-Performance RF Balanced Microstrip Mixer Configuration for Cryogenic and Room Temperatures. Electronics 2022, 11, 102. https://doi.org/10.3390/electronics11010102
Citron N, Holdengreber E, Sorkin O, Schacham SE, Farber E. High-Performance RF Balanced Microstrip Mixer Configuration for Cryogenic and Room Temperatures. Electronics. 2022; 11(1):102. https://doi.org/10.3390/electronics11010102
Chicago/Turabian StyleCitron, Noy, Eldad Holdengreber, Oz Sorkin, Shmuel E. Schacham, and Eliyahu Farber. 2022. "High-Performance RF Balanced Microstrip Mixer Configuration for Cryogenic and Room Temperatures" Electronics 11, no. 1: 102. https://doi.org/10.3390/electronics11010102
APA StyleCitron, N., Holdengreber, E., Sorkin, O., Schacham, S. E., & Farber, E. (2022). High-Performance RF Balanced Microstrip Mixer Configuration for Cryogenic and Room Temperatures. Electronics, 11(1), 102. https://doi.org/10.3390/electronics11010102