Two Decades of Condition Monitoring Methods for Power Devices
Abstract
:1. Introduction
2. Conditioning Monitoring Methods and Their Future Application
3. Acoustic Methods
4. Optical Methods
4.1. Infra-Red/Visible Emission
4.2. Optical Fibers
4.3. IR-Detection Apparatuses
4.4. Other Techniques
5. Physical Methods
5.1. Thermocouples
5.2. Liquid Crystals
6. Electrical Methods
6.1. Thermal Test Chips
6.2. Methods Using the Thermo-Sensitive Electrical Parameters (TSEPs)
6.2.1. On-State Voltage Measurement
6.2.2. Saturation Current
6.2.3. Gate Threshold Voltage
6.2.4. Gate-Source or Gate-Emitter Voltage Turn ON-OFF
6.2.5. Turn On-Off Delay Time
6.2.6. Current and Voltage Change Rate
6.2.7. Peak Gate Current
7. Comparison of the CM Methods
8. Conclusions
Funding
Conflicts of Interest
References
- Blaabjerg, F.; Dragicevic, T.; Davari, P. Applications of Power Electronics. Electronics 2019, 8, 465. [Google Scholar] [CrossRef] [Green Version]
- Abadi, I.; Imron, C.; Bachrowi, M.M.; Fitriyanah, D.N. Design and implementation of battery charging system on solar tracker based standalone PV using fuzzy modified particle swarm optimization. AIMS Energy 2020, 8, 142–155. [Google Scholar] [CrossRef]
- García Salvador, R.M.; Novas, N.; Alcayde, A.; El Khaled, D.; Montoya, F.G. Electronics and Its Worldwide Research. Electronics 2020, 9, 977. [Google Scholar] [CrossRef]
- Gritti, G.; Adragna, C. Analysis, design and performance evaluation of an LED driver with unity power factor and constant-current primary sensing regulation. AIMS Energy 2019, 7, 579–599. [Google Scholar] [CrossRef]
- Musumeci, S.; Bojoi, R.; Armando, E.; Borlo, S.; Mandrile, F. Three-Legs Interleaved Boost Power Factor Corrector for High-Power LED Lighting Application. Energies 2020, 13, 1728. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, M.; Krein, P.T. Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces. IEEE Trans. Power Electron. 2013, 28, 5673–5689. [Google Scholar] [CrossRef]
- Konara, K.M.S.Y.; Kolhe, M.L.; Sharma, A. Power dispatching techniques as a finite state machine for a standalone photovoltaic system with a hybrid energy storage. AIMS Energy 2020, 8, 214–230. [Google Scholar] [CrossRef]
- Faraci, G.; Raciti, A.; Rizzo, S.A.; Schembra, G. Green Wireless Power Transfer System for a Drone Fleet Managed by Reinforcement Learning in Smart Industry. Appl. Energy 2020, 259, 114204. [Google Scholar] [CrossRef]
- Ding, Y.; Loh, P.C.; Tan, K.K.; Wang, P.; Gao, F. Reliability evaluation of three-level inverters. In Proceedings of the 25th Annual IEEE Applied Power Electronics Conference and Exposition, Palm Springs, CA, USA, 21–25 February 2010; pp. 1555–1560. [Google Scholar]
- De Leon-Aldaco, S.E.; Calleja, H.; Chan, F.; Jimenez-Grajales, H.R. Effect of the mission profile on the reliability of a power converter aimed at photovoltaic applications-a case study. IEEE Trans. Power Electron. 2013, 28, 2998–3007. [Google Scholar] [CrossRef]
- Alam, M.K.; Khan, F.H. Reliability analysis and performance degradation of a boost converter. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 5592–5597. [Google Scholar]
- Tajfar, A.; Mazumder, S.K. A fault-tolerant switching scheme for a photovoltaic high-frequency-link inverter. In Proceedings of the 27th Annual IEEE Applied Power Electronics Conference and Exposition, Orlando, FL, USA, 5–9 February 2012; pp. 2087–2094. [Google Scholar]
- Madhukar Rao, A.; Umesh, B.S.; Sivakumar, K. A fault tolerant dual inverter configuration for islanded mode photovoltaic generation system. In Proceedings of the 1st International Future Energy Electronics Conference, Tainan, Taiwan, 3–6 November 2013; pp. 816–821. [Google Scholar]
- Haumann, S.; Becker, M.; Rudzki, J.; Eisele, R.; Osterwald, F. Novel bonding and joining technology for power electronics—Enabler for improved lifetime, reliability, cost and power density. In Proceedings of the 28th Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, USA, 17–21 March 2013; pp. 622–626. [Google Scholar]
- Krebs, T.; Duch, S.; Schmitt, W.; Kotter, S.; Prenosil, P.; Thomas, S. A breakthrough in power electronics reliability–new die attach and wire bonding materials. In Proceedings of the IEEE 63rd Electronics Components and Technology Conference, La Vegas, NV, USA, 28–31 May 2013; pp. 1746–1752. [Google Scholar]
- Mohagheghi, S.; Harley, R.G.; Habetler, T.G.; Divan, D. Condition monitoring of power electronic circuits using artificial neural networks. IEEE Trans. Power Electron. 2009, 24, 2363–2367. [Google Scholar] [CrossRef]
- Xiang, D.; Ran, L.; Tavner, P.; Bryant, A.; Yang, S.; Mawby, P. Monitoring solder fatigue in a power module using case-above-ambient temperature rise. IEEE Trans. Ind. Appl. 2011, 47, 2578–2591. [Google Scholar] [CrossRef]
- Li, D.; Li, X. Study of degradation in switching mode power supply based on the theory of PoF. In Proceedings of the International Conference Computing Science and Service Systems, Nanjing, China, 11–13 August 2012; pp. 1976–1980. [Google Scholar]
- Bhargava, C.; Sharma, P.K.; Senthilkumar, M.; Padmanaban, S.; Ramachandaramurthy, V.K.; Leonowicz, Z.; Blaabjerg, F.; Mitolo, M. Review of Health Prognostics and Condition Monitoring of Electronic Components. IEEE Access 2020, 8, 75163–75183. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, L.; Liu, Z.Q.; Sun, L.; Long, W.M.; He, P.; Xiong, M.Y.; Zhao, M. Reliability issues of lead-free solder joints in electronic devices. Sci. Technol. Adv. Mater. 2019, 20, 876–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamiya, M.; Miyazaki, K.; Obara, H.; Sai, T.; Wada, K.; Sakurai, T. Power electronics 2.0: IoT-connected and Al-controlled power electronics operating optimally for each user. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 28 May–1 June 2017; pp. 29–32. [Google Scholar]
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Progr. Energy Combust. Sci. 2008, 34, 574–632. [Google Scholar] [CrossRef]
- Butler, S.W. Enabling a Powerful Decade of Changes [Flyback]. IEEE Power Electron. Mag. 2019, 6, 18–26. [Google Scholar] [CrossRef]
- Balda, J.C.; Mantooth, A.; Blum, R.; Tenti, P. Cybersecurity and Power Electronics: Addressing the Security Vulnerabilities of the Internet of Things. IEEE Power Electron. Mag. 2017, 4, 37–43. [Google Scholar] [CrossRef]
- Jasperneite, J.; Sauter, T.; Wollschlaeger, M. Why We Need Automation Models: Handling Complexity in Industry 4.0 and the Internet of Things. IEEE Ind. Electron. Mag. 2020, 14, 29–40. [Google Scholar] [CrossRef]
- Levikari, S.; Kärkkäinen, T.J.; Andersson, C.; Tammminen, J.; Silventoinen, P. Acoustic Detection of Cracks and Delamination in Multilayer Ceramic Capacitors. IEEE Trans. Ind. Appl. 2019, 55, 1787–1794. [Google Scholar] [CrossRef]
- Cheraghi, M.; Karimi, M.; Booin, M.B. An investigation on acoustic noise emitted by induction motors due to magnetic sources. In Proceedings of the 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC), Tehran, Iran, 13–15 February 2018; pp. 104–109. [Google Scholar]
- Smulko, J.; Józwiak, k.; Olesz, M.; Hasse, L. Acoustic emission for detecting deterioration of capacitors under aging. Microelectron. Reliab. 2011, 51, 624–627. [Google Scholar] [CrossRef]
- Kärkkäinen, T.J.; Talvitie, J.P.; Kuisma, M.; Silventoinen, P.; Mengotti, E. Measurement challenges in acoustic emission research of semiconductors. In Proceedings of the 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015; pp. 1–6. [Google Scholar]
- Kärkkäinen, T.J.; Talvitie, J.P.; Kuisma, M.; Silventoinen, P.; Mengotti, E. Acoustic emission caused by the failure of a power transistor. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 2481–2484. [Google Scholar]
- Kärkkäinen, T.J.; Talvitie, J.P.; Ikonen, O.; Kuisma, M.; Silventoinen, P.; Mengotti, E. Sounds from semiconductors—Acoustic emission experiment with a power module. In Proceedings of the 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014; pp. 1–6. [Google Scholar]
- Kärkkäinen, T.J.; Talvitie, J.P.; Kuisma, M.; Hannonen, J.; Ström, J.P.; Mengotti, E.; Silventoinen, P. Acoustic Emission in Power Semiconductor Modules—First Observations. IEEE Trans. Power Electron. 2014, 29, 6081–6086. [Google Scholar] [CrossRef]
- Müller, S.; Drechsler, C.; Heinkel, U.; Herold, C. Acoustic emission for state-of-health determination in power modules. In Proceedings of the 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 21–24 March 2016; pp. 468–471. [Google Scholar]
- Davari, P.; Kristensen, O.; Iannuzzo, F. Investigation of acoustic emission as a non-invasive method for detection of power semiconductor aging. Microelectron. Reliab. 2018, 88–90, 545–549. [Google Scholar] [CrossRef]
- Oh, H.; Han, B.; McCluskey, P.; Han, C.; Youn, B.D. Physics-of failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: A review. IEEE Trans. Power Electron. 2015, 30, 2413–2426. [Google Scholar] [CrossRef]
- Luo, H.; Wang, X.; Zhu, C.; Li, W.; He, X. Investigation and emulation of junction temperature for high-power IGBT modules considering grid codes. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 930–940. [Google Scholar] [CrossRef]
- Scheuermann, U.; Schuler, S. Power cycling results for different control strategies. Microelectron. Reliabil. 2010, 50, 1203–1209. [Google Scholar] [CrossRef]
- Zarebski, J.; Gorecki, K. The electro thermal large-signal model of power MOS transistors for SPICE. IEEE Trans. Power Electron. 2010, 25, 1265–1274. [Google Scholar] [CrossRef]
- Breglio, G.; Irace, A.; Spirito, P.; Letor, R.; Russo, S. Fast transient infrared thermal analysis of smart Power MOSFETS in permanent short circuit operation. In Proceedings of the 18th International Symposium on Power Semiconductor Devices IC’s, Naples, Italy, 4–8 June 2006; pp. 1–4. [Google Scholar]
- Hunger, T.; Schilling, O. Numerical investigation on thermal crosstalk of silicon dies in high voltage IGBT modules. In Proceedings of the PCIM International Exhibition & Conference for Power Electronics, Intelligent Motion, Power Quality, Nuremberg, Germany, 27–29 May 2008. [Google Scholar]
- Hillkirk, L.-M. Dynamic surface temperature measurements in SiC epitaxial power diodes performed under single-pulse self-heating conditions. Solid State Electron. 2004, 48, 2181–2189. [Google Scholar] [CrossRef]
- Breglio, G.; Rinaldi, N.; Spirito, P. Thermal mapping and 3D numerical simulation of new cellular power MOS affected by electro-thermal instability. Microelectron. J. 2000, 31, 741–746. [Google Scholar] [CrossRef]
- Spirito, P.; Breglio, G.; D’Alessandro, V.; Rinaldi, N. Thermal instabilities in high current power MOS devices: Experimental evidence electro-thermal simulations and analytical modeling. In Proceedings of the 23rd International Conference on Microelectronics, Nis, Yugoslavia, 12–15 May 2002; pp. 23–30. [Google Scholar]
- Thalhammer, R.-K.; Wachutka, G. Physically rigorous modeling of internal laser-probing techniques for micro structured semiconductor devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2004, 23, 60–70. [Google Scholar] [CrossRef]
- Furbock, C.; Thalhammer, R.; Litzenberger, M.; Seliger, N.; Pogany, D.; Gornik, E.; Wachutka, G. A differential backside laser probing technique for the investigation of the lateral temperature distribution in power devices. In Proceedings of the 11th International Symposium on Power Semiconductors Devices ICs, Toronto, ON, Canada, 26–28 May 1999; pp. 193–196. [Google Scholar]
- Werber, D.; Wachutka, G. Interpretation of laser absorption measurements on 4 H-SiC bipolar diodes by numerical simulation. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices, Yokohama, Japan, 9–11 September 2008; pp. 89–92. [Google Scholar]
- Hamidi, A.; Coquery, G.; Lallemand, R.; Vales, P.; Dorkel, J.M. Temperature measurements and thermal modeling of high power IGBT multichip modules for reliability investigations in traction applications. Microelectron. Reliabil. 1998, 38, 1353–1359. [Google Scholar] [CrossRef]
- Carubelli, S.; Khatir, Z. Experimental validation of a thermal modelling method dedicated to multichip power modules in operating conditions. Microelectron. J. 2003, 34, 1143–1151. [Google Scholar] [CrossRef]
- Khatir, Z.; Carubelli, S.; Lecoq, F. Real-time computation of thermal constraints in multichip power electronic devices. IEEE Trans. Compon. Packag. Technol. 2004, 27, 337–344. [Google Scholar] [CrossRef]
- Schmidt, R.; Scheuermann, U. Using the chip as a temperature sensor—The influence of steep lateral temperature gradients on the Vce(T)-measurement. In Proceedings of the 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–9. [Google Scholar]
- Brckner, T.; Bernet, S. Estimation and measurement of junction temperatures in a three-level voltage source converter. IEEE Trans. Power Electron. 2007, 22, 3–12. [Google Scholar] [CrossRef]
- Mermet-Guyennet, M.; Perpina, X.; Piton, M. Revisiting power cycling test for better life-time prediction in traction. Microelectron. Reliabil. 2007, 47, 1690–1695. [Google Scholar] [CrossRef]
- Avenas, Y.; Dupont, L. Comparison of junction temperature evaluations in a power IGBTs module using an IR camera and three thermo-sensitive electrical parameters. In Proceedings of the Applied Power Electronics Conference and Exposition, Orlando, FL, USA, 5–9 February 2012. [Google Scholar]
- Dupont, L.; Avenas, Y.; Jeannin, P.-O. Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters. IEEE Trans. Ind. Appl. 2013, 49, 1599–1608. [Google Scholar] [CrossRef] [Green Version]
- Round, H.J. A Note on Carborundum. In Semiconductor Devices: Pioneering Papers; World Scientific: Singapore, 1991. [Google Scholar]
- Winkler, J.; Homoth, J.; Kallfass, I. Utilization of parasitic luminescence from power semiconductor devices for current sensing. In Proceedings of the PCIM Europe 2018, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 5–7 June 2018; pp. 1–8. [Google Scholar]
- Ceccarelli, L.; Luo, H.; Iannuzzo, F. Investigating SiC MOSFET body diode’s light emission as temperature-sensitive electrical parameter. Microelectron. Reliab. 2018, 88–90, 627–630. [Google Scholar] [CrossRef]
- Li, C.; Luo, H.; Li, C.; Li, W.; Yang, H.; He, X. Online Junction Temperature Extraction of SiC Power MOSFET with Temperature Sensitive Optic Parameter (TSOP) Approach. IEEE Trans. Power Electron. 2019, 34, 10143–10152. [Google Scholar] [CrossRef]
- Winkler, J.; Homoth, J.; Kallfass, I. Electroluminescence-Based Junction Temperature Measurement Approach for SiC Power MOSFETs. IEEE Trans. Power Electron. 2020, 35, 2990–2998. [Google Scholar] [CrossRef]
- Parsley, M. The use of thermochromics liquid crystals in research applications, thermal mapping and non-destructive testing. In Proceedings of the 7th IEEE Semiconductor Thermal Measurement and Management Symposium, Phoenix, AZ, USA, 12–14 February 1991; pp. 53–58. [Google Scholar]
- Brekel, W.; Duetemeyer, T.; Puk, G.; Schilling, O. Time Resolved in situ Tvj Measurements of 6.5 kV IGBTs during Inverter Operation. In Proceedings of the PCIM Europe 2009: International Exhibition & Conference for Power Electronics Intelligent Motion Power Quality, Nurember, Germany, 12–14 May 2009. [Google Scholar]
- Salem, T.E.; Ibitayo, D.; Geil, B.R. A Technique for Die Surface Temperature Measurement of High-Voltage Power Electronic Components using Coated Thermocouple Probes. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Sorrento, Italy, 24–27 April 2006; pp. 651–654. [Google Scholar]
- Sathik, M.H.M.; Prasanth, S.; Sasongko, F.; Padmanabhan, S.K.; Pou, J.; Simanjorang, R. Online junction temperature for off-the-shelf power converters. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2769–2774. [Google Scholar]
- Ikonen, M.; Häsä, H.; Rauma, K.; Silventoinen, P. A system for thermal model verification of a power switch. In Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–4. [Google Scholar]
- Bonsbaine, A.; Trigkidis, G.; Benamrouche, N. An integrated electro-thermal model of IGBT devices (experimental validation). In Proceedings of the 44th International Universities Power Engineering Conference (UPEC), Glasgow, UK, 1–4 September 2009; pp. 1–5. [Google Scholar]
- Du, B.; Hudgins, J.L.; Santi, E.; Bryant, A.T.; Palmer, P.R.; Mantooth, H.A. Transient Electrothermal Simulation of Power Semiconductor Devices. IEEE Trans. Power Electron. 2010, 25, 237–248. [Google Scholar]
- Claassen, A.; Shaukatullah, H. Comparison of diodes and resistors for measuring chip temperature during thermal characterization of electronic packages using thermal test chips. In Proceedings of the13th Annual IEEE. Semiconductor Thermal Measurement and Management Symposium, Austin, TX, USA, 28–30 January 1997; pp. 198–209. [Google Scholar]
- Motto, E.R.; Donlon, J.F. IGBT module with user accessible on-chip current and temperature sensors. In Proceedings of the Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 176–181. [Google Scholar]
- Ka, I.; Avenas, Y.; Dupont, L.; Vafaei, R.; Thollin, B.; Crebier, J.C.; Petit, M. Instrumented chip dedicated to semiconductor temperature measurements in power electronic converters. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar]
- Zhou, Y.; Shi, W.; Tang, J.; Wang, X.; Li, W.; He, X.; Zhang, C.; Li, Z. Dynamic junction temperature estimation via built-in negative thermal coefficient (NTC) thermistor in high power IGBT modules. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 772–775. [Google Scholar]
- Baker, N.; Iannuzzo, F.; Beczkowski, S.; Kristensen, P.K. Proof-of-Concept for a Kelvin-Emitter On-Chip Temperature Sensor for Power Semiconductors. In Proceedings of the 21st European Conference on Power Electronics and Applications (EPE ‘19 ECCE Europe), Genova, Italy, 3–5 September 2019; pp. P.1–P.8. [Google Scholar]
- Kempiak, C.; Lindemann, A.; Thal, E.; Idaka, S. Investigation of the usage of a chip integrated sensor to determine junction temperature during power cycling tests. In Proceedings of the CIPS 2018, 10th International Conference on Integrated Power Electronics Systems, Stuttgart, Germany, 20–22 March 2018; pp. 1–6. [Google Scholar]
- Baker, N.; Iannuzzo, F.; Li, H. Impact of Kelvin-Source Resistors on Current Sharing and Failure Detection in Multichip Power Modules. In Proceedings of the 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, Latvia, 17–21 September 2018; pp. 1–7. [Google Scholar]
- Kempiak, C.; Lindemann, A.; Idaka, S.; Thal, E. Investigation of an Integrated Sensor to Determine Junction Temperature of SiC MOSFETs during Power Cycling Tests. In Proceedings of the 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019—ECCE Asia), Busan, Korea, 27–31 May 2019; pp. 3084–3089. [Google Scholar]
- Liu, P.; Chen, C.; Zhang, X.; Huang, S. Online junction temperature estimation method for SiC modules with built-in NTC sensor. CPSS Trans. Power Electron. Appl. 2019, 4, 94–99. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, X.; Yin, S.; Tu, C.; Huang, S. Simplified Junction Temperature Estimation using Integrated NTC Sensor for SiC Modules. In Proceedings of the IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–4. [Google Scholar]
- O’ Donnell, K.P.; Chen, X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 1991, 58, 2924–2926. [Google Scholar] [CrossRef] [Green Version]
- Baliga, B.J. Fundamentals of Power Semiconductor Devices; Springer International Publishing: Cham, Switzerland, 2013. [Google Scholar]
- Blackburn, D.-L. An electrical technique for the measurement of the peak junction temperature of power transistors. In Proceedings of the 13th Annual Reliability Physics Symposium, Las Vegas, NV, USA, 1–3 April 1975; pp. 143–150. [Google Scholar]
- Farjah, E.; Perret, R. Application and analysis of thermosensitive parameters in the case of hybrid power modules. In Proceedings of the IEEE IndustryApplcations Society Annual Meeting, Orlando, FL, USA, 8–12 October 1994; pp. 1284–1289. [Google Scholar]
- Choi, U.; Blaabjerg, F.; Iannuzzo, F.; Jørgensen, S. Junction temperature estimation method for a 600V, 30A IGBT module during converter operation. Microelectron. Reliab. 2015, 55, 2022–2026. [Google Scholar] [CrossRef]
- Oettinger, F.F.; Blackburn, D.L.; Rubin, S. Thermal characterization of power transistors. IEEE Trans. Electron. Devices 1976, 23, 831–838. [Google Scholar] [CrossRef]
- Held, M.; Jacob, P.; Nicoletti, G.; Scacco, P.; Poech, M.-H. Fast power cycling test for insulated gate bipolar transistor modules in traction application. Int. J. Electron. 1999, 86, 1193–1204. [Google Scholar] [CrossRef]
- Blackburn, D.L. A review of thermal characterization of power transistors. In Proceedings of the Fourth Annual IEEE Semiconductor Thermal and Temperature Measurement Symposium, San Diego, CA, USA, 10–12 February 1988; pp. 1–7. [Google Scholar]
- Khatir, Z.; Dupont, L.; Ibrahim, A. Investigations on junction temperature estimation based on junction voltage measurements. Microelectron. Reliabil. 2010, 50, 1506–1510. [Google Scholar] [CrossRef]
- Barnes, C.-M.; Tuma, P.-E. Practical considerations relating to immersion cooling of power electronics in traction systems. IEEE Trans. Power Electron. 2010, 25, 2478–2485. [Google Scholar] [CrossRef]
- Sofia, J.-W. Electrical measurement using semiconductors. Electron. Cool. 1997, 3, 22–25. [Google Scholar]
- Nowak, M.; Rabkowski, J.; Barlik, R. Measurement of temperature sensitive parameter characteristics of semiconductor silicon and silicon carbide power devices. In Proceedings of the 13th Power Electronics and Motion Control Conference, Poznan, Poland, 1–3 September 2008; pp. 84–87. [Google Scholar]
- Blackburn, D.-L.; Berning, D.-W. Power MOSFET temperature measurements. In Proceedings of the Annual Power Electronics Specialists Conference, Cambridge, MA, USA, 14–17 June 1982; pp. 400–407. [Google Scholar]
- Jakopovic, Z.; Bencic, Z.; Kolonic, F. Important properties of transient thermal impedance for MOS-gated power semiconductors. In Proceedings of the IEEE International Symposium on Industrial Electronics, Bled, Slovenia, 12–16 July 1999; pp. 574–578. [Google Scholar]
- Perpiñà, X.; Serviere, J.-F.; Saiz, J.; Barlini, D.; Mermet-Guyennet, M.; Millán, J. Temperature measurement on series resistance and devices in power packs based on on-state voltage drop monitoring at high current. Microelectron. Reliab. 2006, 46, 1834–1839. [Google Scholar] [CrossRef]
- Meysenc, L.; Saludjian, L.; Bricard, A.; Rael, S.; Schaeffer, C. A high heat flux IGBT micro exchanger setup. IEEE Trans. Compon. Packag. Manuf. Technol. A 1997, 20, 334–341. [Google Scholar] [CrossRef]
- Cova, P.; Ciappa, M.; Franceschini, G.; Malberti, P.; Fantini, F. Thermal characterization of IGBT power modules. Microelectron. Reliabil. 1997, 37, 1731–1734. [Google Scholar] [CrossRef]
- Ammous, A.; Allard, B.; Morel, H. Transient temperature measurements and modeling of IGBT’s under short circuit. IEEE Trans. Power Electron. 1998, 13, 12–25. [Google Scholar] [CrossRef]
- Duong, S.; Rael, S.; Schaeffer, C.; De Palma, J.F. Short circuit behaviour for PT and NPT IGBT devices—Protection against explosion of the case by fuse. In Proceedings of the European Conference on Power Electronics and Applications, Seville, Spain, 19–21 September 1995; pp. 249–254. [Google Scholar]
- Forest, F.; Rashed, A.; Huselstein, J.-J.; Martiré, T.; Enrici, P. Fast power cycling protocols implemented in an automated test bench dedicated to IGBT module ageing. Microelectron. Reliab. 2015, 55, 81–92. [Google Scholar] [CrossRef]
- Koenig, A.; Plum, T.; Fidler, P.; De Doncker, R.-W. On-line junction temperature measurement of CoolMOS devices. In Proceedings of the 7th International Conference on Power Electronics and Drive Systems, Bangkok, Thailand, 27–30 November 2007; pp. 90–95. [Google Scholar]
- Kim, Y.-S.; Sul, S.-K. On-line estimation of IGBT junction temperature using on-state voltage drop. In Proceedings of the 1998 IEEE Industry Applications Conference, St Louis, MO, USA, 12–15 October 1998; pp. 853–859. [Google Scholar]
- Dupont, L.; Avenas, Y. Evaluation of thermo-sensitive electrical parameters based on the forward voltage for on-line chip temperature measurements of IGBT devices. In Proceedings of the Energy Conversion Congress and Exposition (ECCE-2014), Pittsburgh, PA, USA, 14–18 September 2014; pp. 4028–4035. [Google Scholar]
- Ghimire, P.; Pedersen, K.B.; Trintis, I.; Munk-Nielsen, S. Online chip temperature monitoring using Uce-load current and IR thermography. In Proceedings of the Energy Conversion Congress and Exposition (ECCE-2015), Montreal, QC, Canada, 20–24 September 2015; pp. 6602–6609. [Google Scholar]
- Castellazzi, A.; Wachutka, G. Low-voltage Power MOSFETs used as dissipative elements: Electrothermal analysis and characterization. In Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–7. [Google Scholar]
- Ayadi, M.; Fakhfakh, M.; Moez, G.; Neji, R. Electro-Thermal Simulation of a Three Phase Inverter with Cooling System. J. Model. Simul. Syst. 2010, 1, 163–170. [Google Scholar]
- Baliga, J. Power Semiconductor Devices; International Thomson Publishing: Boston, MA, USA, 1996. [Google Scholar]
- Chen, H.; Pickert, V.; Atkinson, D.J.; Pritchard, L.S. On-line monitoring of the MOSFET device junction temperature by computation of the threshold voltage. In Proceedings of the 3rd IET International Conference on Power Electronics, Machines and Drives, Dublin, Ireland, 4–6 April 2006; pp. 440–444. [Google Scholar]
- Cao, X.; Wang, T.; Lu, G.-Q.; Ngo, K.D.T. Characterization of lead-free solder and sintered nano-silver die-attach layers using thermal impedance. In Proceedings of the International Power Electronics Conference, Sapporo, Japan, 21–24 June 2010; pp. 546–552. [Google Scholar]
- Huang, X.Y.; Lu, C.; Xie, X.; Fan, Y.; Zhang, J.; Meng, X. A study of test system for thermal resistance of IGBT. In Proceedings of the 2010 Asia Pacific Conference on Postgraduate Research in Microelectronics Electronics (PrimeAsia), Shanghai, China, 22–24 September 2010; pp. 312–315. [Google Scholar]
- Strauss, B.; Lindemann, A. Indirect measurement of junction temperature for condition monitoring of power semiconductor devices during operation. In Proceedings of the PCIM Europe, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 19–20 May 2015; pp. 1–6. [Google Scholar]
- Butron Ccoa, J.A.; Strauss, B.; Mitic, G.; Lindemann, A. Investigation of Temperature Sensitive Electrical Parameters for Power Semiconductors (IGBT) in Real-Time Applications. In Proceedings of the PCIM Europe, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 20–22 May 2014; pp. 1–9. [Google Scholar]
- Berning, D.; Reichl, J.; Hefner, A.; Hernandez, M.; Ellenwood, C.; Lai, J.-S. High speed IGBT module transient thermal response measurements for model validation. In Proceedings of the 38th IAS Annual Meeting on Industry Applications Conference, Salt Lake City, UT, USA, 12–16 October 2003; pp. 1826–1832. [Google Scholar]
- Sundaramoorthy, V.; Bianda, E.; Bloch, R.; Nistor, I.; Knapp, G.; Heinemann, A. Online estimation of IGBT junction temperature (Tj) using gate-emitter voltage (Vge) at turn-off. In Proceedings of the 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 3–5 September 2013; pp. 1–10. [Google Scholar]
- Kuhn, H.; Mertens, A. On-line junction temperature measurement of IGBTs based on temperature sensitive electrical parameters. In Proceedings of the 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar]
- Barlini, D.; Ciappa, M.; Castellazzi, A.; Mermet-Guyennet, M.; Fichtner, W. New technique for the measurement of the static and of the transient junction temperature in IGBT devices under operating conditions. Microelectron. Reliabil. 2006, 46, 1772–1777. [Google Scholar] [CrossRef]
- Du, M.; Xin, J.; Wang, H.; Ouyang, Z.; Wei, K. Estimating Junction Temperature of SiC MOSFET Using Its Drain Current during Turn-On Transient. IEEE Trans. Electron. Devices 2020, 67, 1911–1918. [Google Scholar] [CrossRef]
- Li, L.; Ning, P.; Wen, X.; Li, Y.; Ge, Q.; Zhang, D.; Tai, X. A turn-off delay time measurement and junction temperature estimation method for IGBT. In Proceedings of the Applied Power Electronics Conference and Exposition (APEC-2017), Tampa, FL, USA, 26–30 March 2017; pp. 2290–2296. [Google Scholar]
- Zhang, Z.; Wang, F.; Costinett, D.J.; Tolbert, L.M.; Blalock, B.J.; Wu, X. Online junction temperature monitoring using turn-off delay time for silicon carbide power devices. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar]
- Luo, H.; Chen, Y.; Sun, P.; Li, W.; He, X. Junction Temperature Extraction Approach with Turn-Off Delay Time for High-Voltage High-Power IGBT Modules. IEEE Trans. Power Electron. 2016, 31, 5122–5132. [Google Scholar] [CrossRef]
- Zhang, J.; Du, M.; Jing, L.; Wei, K.; Hurley, W.G. IGBT Junction Temperature Measurements: Inclusive of Dynamic Thermal Parameters. IEEE Trans. Device Mater. Reliab. 2019, 19, 333–340. [Google Scholar] [CrossRef]
- Luo, H.; Chen, Y.; Li, W.; He, X. Online high-power pin diode junction temperature extraction with reverse recovery fall storage charge. IEEE Trans. Power Electron. 2016, 32, 2558–2567. [Google Scholar] [CrossRef]
- Luo, H.; Li, W.; He, X. Online high power Pin diode chip temperature extraction and prediction method with maximum recovery current di/dt. IEEE Trans. Power Electron. 2015, 30, 2395–2404. [Google Scholar] [CrossRef]
- Xiang, D.; Ran, L.; Tavner, P.; Yang, S. Condition monitoring power module solder fatigue using inverter harmonic identification. IEEE Trans. Power Electron. 2012, 27, 235–247. [Google Scholar] [CrossRef]
- Bryant, A.; Yang, S.; Mawby, P.; Xiang, D. Investigation into IGBT dV/dt during turn-off and its temperature dependence. IEEE Trans. Power Electron. 2011, 26, 3019–3031. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Luo, H.; Li, W.; He, X.; Iannuzzo, F.; Blaabjerg, F. Analytical and Experimental Investigation on a Dynamic Thermo-Sensitive Electrical Parameter with Maximum dIC/dt during Turn-off for High Power Trench Gate/Field-Stop IGBT Modules. IEEE Trans. Power Electron. 2017, 32, 6394–6404. [Google Scholar] [CrossRef]
- Zheng, R.; Haoge, X.; Chengmin, L.; Wuhua, L.; Xiangning, H.; Luo, H.; Li, D. Online Aging Parameter Extraction with Induced Voltage veE between Kelvin and Power Emitter in Turn-off Progress for IGBT Modules. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 362–366. [Google Scholar]
- Zeng, Z.; Li, X.; Zhang, X.; Cao, L. Comparative Evaluation of Kelvin Connection for Current Sharing of Multi-Chip Power Modules. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 4664–4670. [Google Scholar]
- Chen, H.L.; Li, W.; He, X. A thermo-sensitive electrical parameter with maximum dIC/dt during turn-off for high power trench/field-stop IGBT modules. In Proceedings of the 31th Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, USA, 20–24 March 2016; pp. 499–504. [Google Scholar]
- Mautry, P.G.; Trager, J. Investigation of self-heating in VLSI and ULSI MOSFETs. In Proceedings of the International Conference on Microelectronic Test Structures, San Diego, CA, USA, 5–7 March 1990; pp. 221–226. [Google Scholar]
- Baker, N.; Munk-Nielsen, S.; Liserre, M.; Iannuzzo, F. Online junction temperature measurement via internal gate resistance during turn-on. In Proceedings of the 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014; pp. 1–10. [Google Scholar]
- Lembeye, Y.; Schanen, J.L.; Keradec, J.P. Experimental characterization of insulated gate power components: Capacitive aspects. In Proceedings of the 32nd IAS Annual Meeting on Industry Applications Conference, New Orleans, LA, USA, 5–9 October 1997; pp. 983–988. [Google Scholar]
- Zhou, S.; Zhou, L.; Sun, P. Monitoring potential defects in an IGBT module based on dynamic changes of the gate current. IEEE Trans. Power Electron. 2013, 28, 1479–1487. [Google Scholar] [CrossRef]
- Baker, N.; Munk-Nielsen, S.; Iannuzzo, F.; Liserre, M. IGBT Junction Temperature Measurement via Peak Gate Current. IEEE Trans. Power Electron. 2016, 31, 3784–3793. [Google Scholar] [CrossRef]
- Baker, N.; Dupont, L.; Munk-Nielsen, S.; Iannuzzo, F.; Liserre, M. IR Camera Validation of IGBT Junction Temperature Measurement via Peak Gate Current. IEEE Trans. Power Electron. 2017, 32, 3099–3111. [Google Scholar] [CrossRef] [Green Version]
Method | Measured Quantity |
---|---|
Acoustic | Acoustic waves |
OPTICAL—Fiber optic | Light wavelength |
OPTICAL—Photodiode sensor—internal | Light intensity |
OPTICAL—Photodiode sensor—external | Light intensity |
OPTICAL—IR camera print | Light wavelength |
OPTICAL—IR camera | Light wavelength |
Physical | Resistance |
TTCs—NTC | Resistance |
TTCs—Diode | Voltage |
TSEP—On-state voltage, low current | Vce, Vds |
TSEP—On-state voltage, high current | Device current, Vce, Vds |
TSEP—Saturation current | Vce–Vds |
TSEP—Gate threshold voltage | Vge—Vgs |
TSEP—Gate turn OFF voltage | Vge–Vce, Vgs–Vds, Gate resistance |
TSEP—Turn on-off delay time | Device current, Vce–Vds |
TSEP—Voltage–current change rate di/dt | Device current, Vce–Vds |
TSEP—Peak gate current | Vge–Vgs |
Method | Advantages | Disadvantages |
---|---|---|
OPTICAL—Fiber optic [46,47,48] | On-line measurements High sensitivity and accuracy | Package modification High cost |
OPTICAL—Photodiode sensor—internal | On-line measurements Contactless | Technology not mature Package modification |
OPTICAL—Photodiode sensor—external [56,57,58] | On-line measurements Contactless | Package modification |
OPTICAL—IR camera [48,49,50,51,52,53] | Spatial resolution Contactless | Package modification Poor response time Poor accuracy |
OPTICAL—IR camera print [49] | Spatial resolution Contactless | Poor response time Poor accuracy |
Acoustic [28,29,30,31,32,33] | On-line measurements Contactless | Technology not mature Noise sensitive |
Physical [59,60,61,62,63,64,65] | On-line measurements High linearity and sensitivity | Package modification Poor response time |
TTCs—NTC [67,69,70,72,75] | On-line measurements High linearity | Layout modification Aging sensitive |
TTCs—Diode [68,71] | On-line measurements High sensitivity | Layout modification Poor linearity |
TSEP—On-state voltage, low current [80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95] | High sensitivity, linearity Easy calibration | High-cost sensing Off-line measurements |
TSEP—Gate threshold voltage [89,93,94,103,104,105] | High sensitivity and linearity | Off-line measurements Unplug DUT |
TSEP—On-state voltage, high current [96,97,98,99] | On-line measurements High linearity | High-cost sensing Aging sensitive |
TSEP—Saturation current [87,93,100,101] | High sensitivity | Off-line measurements Poor linearity |
TSEP—Gate turn OFF voltage [108,109] | High linearity | Off-line measurements High-cost sensing |
TSEP—Turn on-off delay time [110,111,112,113,114,115,116] | On-line measurements High linearity | Aging sensitive High-cost sensing |
TSEP—Peak gate current [129,130] | On-line measurements High linearity | Aging sensitive High-cost sensing |
TSEP—Voltage-current change rate [117,118,119,120,121] | High sensitivity and linearity | Off-line measurements Gate resistance dependence |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susinni, G.; Rizzo, S.A.; Iannuzzo, F. Two Decades of Condition Monitoring Methods for Power Devices. Electronics 2021, 10, 683. https://doi.org/10.3390/electronics10060683
Susinni G, Rizzo SA, Iannuzzo F. Two Decades of Condition Monitoring Methods for Power Devices. Electronics. 2021; 10(6):683. https://doi.org/10.3390/electronics10060683
Chicago/Turabian StyleSusinni, Giovanni, Santi Agatino Rizzo, and Francesco Iannuzzo. 2021. "Two Decades of Condition Monitoring Methods for Power Devices" Electronics 10, no. 6: 683. https://doi.org/10.3390/electronics10060683
APA StyleSusinni, G., Rizzo, S. A., & Iannuzzo, F. (2021). Two Decades of Condition Monitoring Methods for Power Devices. Electronics, 10(6), 683. https://doi.org/10.3390/electronics10060683