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Abstract: Condition monitoring (CM) of power semiconductor devices enhances converter reliability
and customer service. Many studies have investigated the semiconductor devices failure modes,
the sensor technologies, and the signal processing techniques to optimize the CM. Furthermore,
the improvement of power devices’ CM thanks to the use of the Internet of Things and artificial
intelligence technologies is rising in smart grids, transportation electrification, and so on. These
technologies will be widespread in the future, where more and more smart techniques and smart
sensors will enable a better estimation of the state of the health (SOH) of the devices. Considering
the increasing use of power converters, CM is essential as the analysis of the data obtained from
multiple sensors enables the prediction of the SOH, which, in turn, enables to properly schedule the
maintenance, i.e., accounting for the trade-off between the maintenance cost and the cost and issues
due to the device failure. From this perspective, this review paper summarizes past developments
and recent advances of the various methods with the aim of describing the current state-of-the-art in
CM research.
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1. Introduction

Nowadays, power electronics is widespread in a huge number of daily applications
that improve services for the collective [1]. Furthermore, power electronics has a key role
in renewable energy systems [2,3], lighting [4,5], electric mobility [6,7], and other systems
that enable sustainable development [8].

A crucial aspect is the reliability and lifetime prediction of the whole power conversion
system. The warrant of the highest robustness level while minimizing the product and
maintenance cost is extremely mandatory. For example, the devices used in avionic
and automotive applications must have a fault rate close to zero that imposes stringent
requirements during the system design. In the same way, wind farms must guarantee
normal operations without interruption, but this is extremely difficult because of the
expensive access to farms for easier maintenance. In this context, many approaches to
forecasting the lifetime of power electronic systems and the single power device have been
intensively studied.

To guarantee a high level of reliability, it is important to comply with several stan-
dards [9–11], and different strategies are usually performed such as the use of the fault-
tolerant topologies with redundant components [12,13], and the advanced reliable design
of power electronic devices using innovative materials [14,15].

Unfortunately, the enhanced system’s robustness does not prevent failure and, indeed,
it is never completely foreseeable. Therefore, a maintenance operation before a failure is
necessary. Considering the costs of maintenance operations, lifetime prediction combined
with condition monitoring approaches [16,17] are very useful tools to choose when a
maintenance operation has to be carried out.
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Some studies have shown that capacitors are fragile with a failure of 30%, whereas
the failure of the PCB and connectors is around 36% [18–20]. The remaining part is related
to the semiconductor and soldering failures in device modules that consist of the most
important area of concern for converter system failures. In this context, countless condition
monitoring (CM) methods for the evaluation of the semiconductor state of health have
been widely explored in the literature.

The target of this work is to provide an overview of various CM methods that have
been used to evaluate the state of the health of power devices. More specifically, the first
part of the proposed review was focused on the impact of the Internet of Things (IoT) and
artificial intelligence (AI) technologies used for CM of power devices, with a chronological
overview of the main CM methods over the last two decades. Then, it a first CM method
based on acoustic emission was presented and used to detect any physical damage in a
power module packaging. It is worth underlining that it enables one to estimate the state
of aging of a power module.

Then, CM methods based on the optical properties of the semiconductor power
devices were presented, including temperature estimation. These methods are usually
based on an optical beam that is reflected or scattered back from the semiconductor lattice.
There is an inherent dependence between the temperature and the energy related to the
photoemission. More specifically, such energy is a function of the junction temperature (JT);
hence, in turn, the energy variation can be used to estimate the temperature of the chip.
After that, a depth-analysis of the several approaches to extract the junction temperature in
the semiconductor devices based on the physical or electrical properties was performed.
The early works using a physical CM method for the JT measurement were done by directly
contacting the chip surface with a thermo-sensitive material such as a point contact system
(such as thermocouples and liquid crystal). On the other hand, electrical methods for
the junction temperature measurement are often the preferred choice for CM of power
devices because the temperature estimation can be carried out through the measurement
of electrical quantities. Among various electrical CM methods, thermal test chips (TTCs)
are directly fabricated on the die surface of the device, and the voltage drop can be used to
estimate the temperature variations. On the other hand, the temperature sensitive electrical
parameters (TSEPs) are based on the measurement of the voltage drop during the converter
operations. Generally, the measurement of the voltage drop can be carried out using some
voltage probes connected to the device terminals.

Although the measurement of the power devices’ junction temperature was widely
treated in many ways, it is still an active relevant topic owing to the current trade-off
between the advantages and limitations of the methods proposed so far. Therefore, all
these methods have been compared in terms of their main aspects such as sensitivity,
linearity, cost, and online monitoring operations.

2. Conditioning Monitoring Methods and Their Future Application

In the literature, the research topic based on CM methods has been gaining interest
as the various maintenance strategies allow to increase the lifetime of the overall power
conversion system. In many applications, it is becoming crucial to monitor the state of the
health (SOH) of power devices to prevent a failure, that is, the possibility for the operators
to obtain a lifetime estimation, thus properly scheduling any maintenance operations.

Figure 1 depicts a timeline of the various CM methods for power devices that have
been widely studied in the literature and used by the industry in the last two decades. The
first use of CM methods for power devices dates back to the 2000s, where the measure
of on-state voltage of the devices was used as a well-known parameter to monitor the
device condition. Later, the measure of the threshold voltage or the gate turn-off voltage
of a device was used to estimate the temperature dependence of the power devices by
measuring a low voltage; then, the acquisition system was developed to be more simple
and less bulky. In the last 5 years, the estimation of the SOH has been carried out using
contactless approach such as the acoustic method or the photodiode approach, where the
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acoustic emission or the light emission, respectively, of a particular device have been taken
into account.
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The thermal stresses such as the increasing of the mean temperature and abrupt tem-
perature fluctuations are the main failure mechanisms. Consequentially, the temperature is
an index of the power device SOH. Other CM methods focus on other quantities. Table 1
summarizes the physical or electrical quantities measured for each CM method and, in
the following subsections, a brief overview is presented. It is worth noting that, among
the various CM methods in the literature, the acoustic one is used to detect the state of the
aging of the power device without any estimation of the working temperature, while all the
other strategies are focused on the estimation of the junction temperature (JT). More specif-
ically, some CM methods perform such estimation by directly measuring the temperature,
such as the infrared (IR) camera, a negative temperature coefficient (NTC) resistor, fiber
optic cable, and photodiodes sensors. Other methods provide an indirect estimation by
mapping electrical quantities in a temperature value, such as the thermo-sensitive electrical
parameters (TSEPs).

Table 1. Measured quantities for the different condition monitoring (CM) methods. IR, infrared; NTC,
negative temperature coefficient; TTC, thermal test chip; TSEP, thermo-sensitive electrical parameter.

Method Measured Quantity

Acoustic Acoustic waves
OPTICAL—Fiber optic Light wavelength

OPTICAL—Photodiode sensor—internal Light intensity
OPTICAL—Photodiode sensor—external Light intensity

OPTICAL—IR camera print Light wavelength
OPTICAL—IR camera Light wavelength

Physical Resistance
TTCs—NTC Resistance

TTCs—Diode Voltage
TSEP—On-state voltage, low current Vce, Vds
TSEP—On-state voltage, high current Device current, Vce, Vds

TSEP—Saturation current Vce–Vds
TSEP—Gate threshold voltage Vge—Vgs
TSEP—Gate turn OFF voltage Vge–Vce, Vgs–Vds, Gate resistance
TSEP—Turn on-off delay time Device current, Vce–Vds

TSEP—Voltage–current change rate di/dt Device current, Vce–Vds
TSEP—Peak gate current Vge–Vgs

According to recent research, the emerging trend of IoT and AI technologies are gain-
ing more and more interest and they are expanding rapidly in the field of CM methods [21].
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AI aims to assist electronic systems with intelligence that is capable of human-like
learning and reasoning. This technology possesses countless advantages and has been
widely applied in numerous industrial and research areas such as maximum power point
tracking (MPPT) control for Photovoltaic (PV) plants, anomaly operation detection for
inverter, and prediction of the SOH of a power converter.

The use of enabling AI technologies allows the power converter systems to be em-
bedded with capabilities of self-awareness and self-adaptability, thus system autonomy
can be enhanced. Similarly, the development of data science, including sensor technology,
IoT, and big data analytics, provides a wide variety of data for power electronic systems
throughout different stages of its life-cycle. Furthermore, AI technology can exploit data to
estimate the system health status with high sensitivity in condition monitoring for aging
detection of power devices. Only in a few works [22–25] has the condition monitoring and
fault detection in power electronics AI-based fault detection been presented.

Figure 2 shows a proof-of-concept of the integration between IA and IoT technologies
for CM of power devices. More specifically, Figure 2a depicts an example of a user (red
box), which consists of a specific power converter and its power devices that have to
be monitored, and an example of a provider of CM services (PS) (yellow block). More
specifically, the devices of a single-user power application are connected with several
sensors that enable the monitoring of the SOH of each device (such as the measurement of
the TJ or the state of aging of a device). Then, the controller system interface (CSI) manages
the sensors and collects all the measured data. The CSI block plays an important role for the
CM of the power system because it is able to provide control signals and it may exchange
data with different users in the IoT framework (see Figure 2b).

The PS (sometimes also the CSI) uses AI technologies that act as “intelligent agents”,
exploiting sensors able at perceiving the environment of the power converter. Indeed,
during some power converter operations, the JT can be dangerously increased over a
threshold maximum value, hence the AI is able to suddenly shut down the power system.
Moreover, the AI-integrated system may enable a power derating in order to avoid any
failure of the converter and, hence, the power devices. On the other hand, AI should
perform more complex tasks, such as detecting any change in the device behavior that
could lead to future malfunctioning; interacting with the CSI “to propose” solutions,
i.e., fault preventing strategies, to current anomalies or potential future ones; and so on.
Regardless of whether AI is located in the PS, in the CSI, or both, a local backup control
system is necessary. The local controller should be simple (without complex hardware
and control strategies) and highly reliable. The local controller should have less stringent
limits than the AI, thus the local controller intervenes only when the system is close to
a dangerous situation. For example, the local converter shuts down the converter when
the JT passes over a preset limit and this situation occurs owing to the lack of a smarter
command (load reduction, switching frequency variation, and so on) from the AI of the
PS because of different causes (e.g., temporary lack of connection, unexpected AI actions
or reasoning).

It is worth noting that the PSs are able to contribute to the decision making in both
offline and real-time analysis using data acquired in the past and saved into a dedicated
database (green silos). From this perspective, all the collected data can be used to enhance
the predictive model of the SOH of the power devices.

Moreover, the PS may interact with enterprises, authorities, public companies, and so
on. For example, real-time use of CM occurs when a PS notices a critical functioning of the
converters of a large PV system. The PS informs the PV owner as well as interacts with the
PV management system to enable them to promptly and properly operate. On the other
hand, the PS also informs the electric network operator (ENO) of the smart grid where the
PV is installed about a potential disconnection of the PV system. This information enables
the ENO to adopt countermeasures that mitigate the impact of such a disconnection. In
turn, the ENO informs sensitive customers, e.g., hospitals, of a potential lack of service or
asks them to turn on a backup system in order to reduce the absorbed power.
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Furthermore, the measurements of the JT and other parameters of the power devices
can be used by some public institutions such as universities or research centers (blue pale
and red dashed lines) for an off-line analysis of the data to carry out some models of the
SOH of the power devices. Moreover, the PS may be connected to a security organization
(grey dashed lines) that may collect data and it should be able to interrupt an electrical
service in the case of failure.

It is worth underlining that the PSs could provide data to the power device manufac-
turers with the aim to share information related to the state of aging of the power devices.
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The manufacturers can use the data to improve their power devices as well as to obtain
more accurate power device models. Indeed, manufacturers can act as PSs.

3. Acoustic Methods

Acoustic emission has been widely investigated in the literature as a CM quantity
useful in different application fields such as pumps, industrial electrical machines, and so
on. Moreover, in the field of power electronics, acoustic monitoring has been extensively
used to detect any defects or damage in transformers and capacitors [25–27]. Only in
the last decade, a few works have been focused on the acoustic phenomenon such as a
measurement method for monitoring the SOH of the power semiconductor devices [28–33].

Acoustic emission has been used to detect any physical damage in a power module
packaging using an acoustic microscope. Furthermore, from the experimental evidence, it
has been proven that acoustic emissions are related to the switching operations of power
devices. In the case of fast switching operation (tens of nanoseconds), a certain amount
of current is switched, which causes a large di/dt, which involves magnetic interaction
within the module packaging. This means that the magnetic force could be the source
of the acoustic emission, such as the mechanical breaking of the structure inside the
component package. However, the physical phenomena causing the acoustic emission are
not definitively understood.

Thereby, the device under test (DUT) is monitored contactless with an acoustic sensor
that is usually placed in the proximity of the package. It intrinsically eliminates the issues
related to contact directly with the voltage probes.

A correlation between the SOH of the power module and the analysis of its acoustic
emission during the switching process has been analyzed [28–30]. It has been demonstrated
that the acoustic peak in an aged device is smaller in comparison with a new one. However,
in these works, only the acoustic emission of an Insulated Gate Bipolar Transistor (IGBT)
connected into short-circuit has been investigated. Meanwhile, the authors of [32] present
an early experimental setup used to prove that acoustic emission is related to the switching
of power semiconductor components. Furthermore, the authors have proposed an analysis
based on propagation delays to assess the source of the acoustic emission. The authors
in [33] have investigated the acoustic emission as a CM method to measure the fatigue
mechanisms in the power module. More specifically, they have investigated the physical
degradation, observing the aging process of the whole power module by measuring the
frequency spectrum of acoustic emission. The authors in [34] have measured the acoustic
emission during converter operations to estimate the aging of a power semiconductor
module due to power cycling. However, a spectrum analysis has been conducted to process
the acquired data. The experimental results have shown a correlation between acoustic
emission and the drain-source voltage, which is a common indicator of degradation of the
bond wires of the power module.

As for disadvantages, the acoustic method needs an expensive and complex sensing
circuit to correctly decode the acoustic emission. Furthermore, the system has to be shielded
against Electromagnetic interference (EMI) and the superposition of noise contributions.

4. Optical Methods

Temperature variation, especially the sudden increase of the JT, plays a significant role
in terms of power device reliability [34,35]. CM methods performing on-line JT monitoring
raise great interest in terms of planning maintenance operations because the working
conditions of a power converter are extremely unpredictable. From this perspective, the
CM methods based on the optical properties of the semiconductor power devices were
studied in depth because they are useful for temperature estimation. These methods are
usually based on an optical beam that is reflected or scattered back from the semiconductor
lattice. There is an inherent dependence between temperature and the energy related
to the photoemission. More specifically, such energy is a function of the JT, hence, in
turn, the energy variation can be used to estimate the temperature of the chip. It is worth
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remembering that these solutions based on optical quantities have some other drawbacks,
such as the high cost and the impracticality in high-voltage converters.

There are various techniques for thermal mapping based on the use of an IR sensor [36–40],
IR microscope [41], 2D radiometry [41,42], and the laser deflection technique [43–45],
while fiber optic [46–48] and the IR camera [49–54] can both be used to obtain a thermal
mapping or the JT value. In the following, the aforementioned optical techniques are
briefly discussed.

4.1. Infra-Red/Visible Emission

An IR sensor is able to detect changes in the amount of infrared radiation of an object,
which may vary depending on the temperature and surface characteristics of the objects in
front of the sensor. The use of the IR sensors as a CM method for the measurement of the
JT in a power device [36–39] is almost inexpensive as well as not very intrusive. However,
these sensors have a low response time and, furthermore, the IR sensors average out the
junction temperature value of the power device, and hence the accuracy is very low.

On the other hand, the emerging trend of the Wide-bandgap (WBG) power devices,
such as the SiC power MOSFETs, are more and more diffusing devices as they concurrently
enable high switching frequency, high voltage, and high-temperature operations. Therefore,
the study of the electroluminescence proprieties of the SiC material for on-line CM has
started to attract wide interest. For different reasons, the electroluminescence proprieties
have already been studied back in 1907 [55], while, in the last three years, the inadvertent
light emission phenomenon in the intrinsic body diode has drawn attention. While the
body diode is in forward conduction mode, the chip glows a visible blue light [56]. The
light brightness of the SiC body diode strongly depends on both the injected current
magnitude and the JT. Hence, the measurement of light brightness can be used as a novel
CM method for temperature detection, where only a few works have already focused on
this topic [56–58]. The first proof of concept of the SiC light emission in a commercial
power module has already proven the potentiality of this CM method [57]. An inexpensive
passive sensing circuit, such as a silicon photodiode and a resistor, was adopted and the
photodiode output voltage was correlated to the light emission intensity as a function
of the temperature. It is worth noting that the system is small enough such that it can
be easily embedded in the package. Another approach considers a light circuit sensing
using two commercial photodiodes with an active signal conditioning circuit [58]. This
approach has been adopted for JT estimation in a real application such as a pulse-width
modulation (PWM) driven converter. The temperature-dependent changes in the spectrum
of the light emission from the body diode of a SiC module have also been investigated [59].
The method has been proven through static characterization and dynamic double pulse
measurement using two silicon photomultipliers, which can detect the peak intensity and,
consequentially, the temperature dependence. Different from the previous CM methods,
the last one, based on the light intensity of the SiC body diode, enables high-voltage
operations and, even more importantly, the JT can be estimated during on-line operations.

4.2. Optical Fibers

The use of optical fiber as a CM method for the power modules has been discussed in
very few works [46–48]. It is worth underlining that this CM method can be used without
removing the dielectric gel on the power module surface, and the JT can be measured by
placing the fiber optic cable in direct contact with the power chip. On the other hand, the
measure is able to give only a local temperature; further, for almost all fiber optic methods,
the measurement response time is generally high. Furthermore, it requires an external
conditioning circuit unit that may be bulky for a specific application.

As an example, in [49], an optical fiber sensor has been used to measure the die
temperature of an IGBT power module to estimate the thermal impedance (see Figure 3).
The module top lid has been removed because the optical system has to be placed close to
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the die. Printing the die and bond-wires to increase the emissivity of the chip is usually
preferable, but causes a cost increment and severely limits the on-line use of the method.
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4.3. IR-Detection Apparatuses

IR-detection apparatuses are not really used as a CM method for power devices,
but are extremely useful in laboratory testing (e.g., under power cycling) [49–53]. More
specifically, the use of an IR camera allows to display the thermal map of the whole surface
of the power module under test, as shown in Figure 4. As expected, the module temperature
is not uniformly distributed; the temperature gradient between the center and the edge of
the module can be greater than 40 ◦C. Usually, an IR camera is used to carry out a spatial
thermal mapping on the device surface, but it is not able to provide an accurate measure of
the device JT. It is worth remembering that some temperature measurement errors can be
done using an IR camera because of the surface degradation of materials and the intrinsic
low emissivity of aluminum. Even in this case, the IR temperature measurements are
usually conducted by varnishing the surface of the DUT with a particular solution that
increases the thermal emissivity on the surface.

4.4. Other Techniques

The IR microscope [40], 2D radiometry [41,42], and the laser deflection technique [43–45]
have also been used as CM methods for power devices. All the aforementioned methods
are able to provide a very precise JT estimation of a semiconductor device, but, on the other
hand, the devices under test are to be driven with a specific testing sequence, not matching
with the real operation in a power converter. They are also very expensive solutions and
are not easily embedded in a real application.

Among the various sensors that use the 2D radiometry and laser deflection technique,
it is worth remembering the InSb photovoltaic detector, which is a high-speed, low-noise
infrared detector that delivers high sensitivity, and with an optical microsensor whose
operating principle is based on detecting the absorption, deflection, and phase shift of an
optical beam.
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5. Physical Methods

The early works treating CM methods for the JT measurement have been done by
directly contacting the chip surface with a thermo-sensitive material such as a point
contact system. In this case, direct access to the semiconductor chip is necessary and,
consequentially, the package must be removed.

Various equipment has been used for the physical contact measurement, including
thermocouples, thermistors, scanning thermal probes, and multiple contact or blanket
coatings such as liquid crystals and thermographic phosphors [59–65]. The aforementioned
equipment relies on the transfer of thermal energy from the DUT to the thermal sensors. In
this case, the spatial resolution related to the contact measurements strictly depends on
the size and the thermal capacitance of thermo-sensible materials. The ability to provide
a temperature map utilizing a matrix of sensors and a wide spatial resolution (can reach
less than 100 nm) are the main advantages. In the following, the aforementioned physical
techniques have been briefly discussed.

5.1. Thermocouples

The physical contact methods that rely on the use of thermocouples are not widespread
in practical applications as the chip of the power module must be accessible to the thermal
probe and, from this perspective, the on-line measurements and high voltage operations
are strongly limited. Furthermore, the measurement of the thermal variation of the power
module strictly depends on the time response of the probe, which may be considerably
slower (few seconds) than the variation of the module JT.

Nowadays, only in a few cases [60,61], the JT of an IGBT module has been experimentally
measured during on-line converter operation. More specifically, the temperature has been
determined using several thermocouples physically connected to the chip (see Figure 5). On
the other hand, several works use the measurement of some thermocouples as target values
to prove the accuracy and effectiveness of new on-line junction temperature estimation
models [62–65]. For example, the effectiveness of a model carried out for a three-phase
power module IGBT by considering the transient thermal impedance has been proven
using several thermocouples [63]. An experimental setup and an on-line control system
that includes a microcontroller and a matrix of K-type thermocouples have been built up
to verify a numerical thermal model for IGBT devices [64]. In [65], an electrical-thermal
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model has been carried out in terms of both the transient and steady-state responses. To
validate the model, an array of thermocouple has been installed on the chip surface. A
thermal model based on the Fourier series solution of heat conduction equations has also
been validated using several thermocouples placed on the surface of the silicon die, on
the base plate, and on the heat sink, in order to characterize the transient electrothermal
behavior of an IGBT module [66].
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couple probe on the die surface (Based on [62]).

5.2. Liquid Crystals

The earliest physical CM methods for the measurement of the JT in a power device
have been obtained by using the scanning thermal probes, as well as multiple contact or
blanket coatings, such as liquid crystals and thermographic phosphors [60].

More specifically, the thermochromic liquid crystals consist of a thermal imaging
tool for mapping surface and spatial temperature distributions. It is worth remembering
that the molecular structure and optical properties of the liquid crystals vary with the
temperature. Hence, the JT measurement of a power device can be done by measuring the
wavelength of the reflected light. These CM methods have a very good spatial resolution,
but on the other hand, they are extremely highly invasive and cannot be used in a real
power converter application owing to the bulky sensing circuits.

6. Electrical Methods

Electrical methods for JT measurement are often the preferred choice for CM of power
devices because the temperature estimation can be carried out through the measurement of
electrical quantities. More specifically, it is worth remembering that the proprieties of the
semiconductor materials are temperature dependent and, hence, the measurement of the
voltage drop or the current that flows into the device can be used as a valid temperature
estimator. Among the various electrical CM methods, thermal test chips (TTCs) are directly
fabricated on the die surface of the device, and the voltage drop can be used to estimate
the temperature variations. On the other hand, the TSEPs are based on the measurement of
the voltage drop (or current) during the converter operations. Generally, the measurement
of the voltage drop can be carried out using some voltage probes that are connected to
the device terminals. The TSEPs are usually the preferred choice for CM because of their
user-friendliness, fast response time to the temperature transients, and good accuracy.
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6.1. Thermal Test Chips

TTCs were originally developed for the thermal characterization of device pack-
ages [67], and since then have also been used in IGBT power modules. TTCs act as thermal
sensors to monitor the JT and they are fabricated on the proximity of the silicon chip.

TTCs can be suitable for on-line temperature measurements. Various types of TTCs
have been realized, such as integrated diodes and resistance temperature detectors
(RTDs) [67–75]. As the forward voltage of the diodes strongly depends on the temperature
variation, the measure of the voltage drop can be used for temperature estimation. It
is worth remembering that the temperature presents an exponential dependence on the
forward voltage. Likewise, RTDs are also used as the temperature-sensitive parameter
because the voltage drop is related to the resistance variations. The variable resistance, Rt,
can be expressed as follows:

Rt = R0(1 + α0∆T) (1)

where R0 is the value of the resistance at 0 ◦C, α0 is the resistance temperature coefficient
that strictly depends on the material, and ∆T is the temperature variation.

To use TTCs, a modified IGBT power module layout with an accessible on-chip
temperature terminal has been proposed in [68]. A string of diodes on the top of the chip
has been fabricated and the measurement of the JT has been performed by measuring
the forward voltage drop. Instead, in [69] a thin-film RTD placed on the top of the IGBT
chip has been realized to measure the average temperature of the die. A similar solution
where an NTC thermistor has been embedded in the IGBT power module has been also
investigated [70]. Innovative use of a kelvin-emitter resistor, placed directly on the IGBT
die surface, as a junction temperature sensor has been also adopted [71]. It provides only a
local temperature measurement. Meanwhile, in [72], a chain of integrated diodes has been
fabricated on the die surface to investigate the JT variations during a power cycling test.

The widespread nature of SiC power modules in different power electronics applica-
tions has also driven forward the research of innovative control techniques that require
real-time monitoring or estimation of the module’s JT. From this perspective, several
works [72–75] have been focused on the development of electrical models of the devices
in which several NTC thermistors have been integrated on the die surface. The mea-
surement of the temperature variation enables the estimation of aging of a device and,
consequentially, the device model can be continuously updated.

The main drawbacks of the TTCs are the production cost and manufacturing complex-
ity of the embedded sensors. Indeed, such layout modification complexity of the power
module packaging can considerably increase and also requires additional terminals for the
temperature measurements. Furthermore, it is worth remembering that the diodes and
RTDs can be affected by degradations along the lifetime of the device that may affect the
accuracy of the measurement. These issues have limited the spread of TTCs in commercial
power devices.

6.2. Methods Using the Thermo-Sensitive Electrical Parameters (TSEPs)

The CM methods outlined so far require visual or physical access to the chip. To
overcome this limitation, the temperature measurement by thermo-sensitive electrical pa-
rameters (TSEPs) has been used as a valid alternative for the estimation of the JT of a power
device. The key point consists of correlating the temperature of the semiconductor material
with the electrical quantities during the normal operation of the converter. More specifically,
the semiconductor devices have an intrinsic dependence on the temperature related to
different parameters, such as the mobility of the carriers µ(T), intrinsic concentration ni(T),
and the bandgap energy Eg(T). It is worth remembering that the Eg(T) and ni(T) increase
at higher temperatures, while µ(T) has a complex dependence with the temperature that
is related to the doping concentration and traps in the gate oxide and silicon interface.
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Therefore, the temperature dependence on the aforementioned parameters may be written
as follows [76–78]:

Eg(T) = Eg(T0)− α1
T2

T + β1
(2)

ni(T) = Nα2 e
−γ
T (3)

µ(T) = µ0

β2

(
T
T0

)α3

1 + β2

(
T
T0

)α4
(4)

where α1, α2, α3, β1, β2, and γ are empirical coefficients; N is the number per unit volume
of effectively available levels states; and T0 is the room temperature.

Consequentially, the measurement of the electrical quantities measured at the device
terminal can be used as a temperature estimator.

Therefore, TSEPs methods use passive voltage or current probes that measure the
electrical quantities at the device electrodes, without direct access to the chip device, then
the JT is estimated from these measurements. Furthermore, the TSEPs are the preferred
approaches to easily obtain JT measurements on packaged devices with a fast time response
(less than 100 microseconds). On the other hand, the TSEPs methods do not provide a
thermal map of the DUT and, hence, the JT peak is often hard to evaluate [79]. Such an
issue is more severe in multichip devices where the voltage or current measurements only
provide a rough temperature of the whole device, without the possibility to know the
effective temperature distribution among several paralleled chips [80]. In the following
subsection, the main TSEPs methods are briefly discussed.

6.2.1. On-State Voltage Measurement

Among the different TSEPs methods, on-state voltage measurement under low current
injection has been the most used in many industrial and academic applications. In this case,
the TSEP is the voltage drop across the device. The advantage of using this CM method
lies in the easy calibration procedure and the negligible self-heating of the DUT.

This CM method is widely employed when the devices have a PN junction in their
structure. More specifically, bearing in mind a vertical diffusion MOSFET power device,
the temperature variation can be evaluated as the on-resistance Rds,on fluctuations during
the converter operations. For the sake of simplicity, the Rds,on can be approximated as
follows (see Figure 6):

Rds,on ≈ Rch + Rd + Rsub + Rcs + Rcd + Rs + Ra + Rj f et (5)

where Rch is the channel resistance, Rd is the drift region resistance, Rsub is the substrate
resistance, Rcs and Rds are the source and drain contact resistance, Rs is the source resistance,
Rjfet is the JFET resistance, and Ra is the accumulation resistance. Furthermore, the Rch and
Rd can be evaluated as follows [78]:

Rch =
Lch

WchµchCox
(
Vgs − Vth

) (6)

Rd =
Ld

qµdNd Ad
(7)

where Lch and Wch are the channel length and width, respectively; Cox is the gate ca-
pacitance; Ld and Ad are the drift region length and area, respectively; Nd is the doping
concentration of the drift region; and µch and µd are the channel and drift region mobility,
respectively. It is worth noting that Rch decreases at higher temperatures because both
µch and Vth decrease at higher temperatures. On the other hand, Rd acts as a positive
temperature coefficient thermistor owing to the temperature dependence of µd, which
decreases at higher temperatures.
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It is worth underlining that the temperature coefficient of Rds,on may differ for the
power devices from different vendors, which is mainly caused by the different design of
the device. Therefore, notwithstanding an easier calibration procedure, the CM method
must be calibrated when a different device is adopted.

Firstly, the calibration procedure is mandatory, which is used to find the relationship
between the JT and the TSEP. Typically, the calibration step consists of the use of a current
source ICal, in a range from 1 mA to tens of A. It is worth noting that, during the calibration
procedure, the device temperature can usually be fixed by a temperature-controlled heat
sink. Then, the temperature measurement can be carried out during the dissipation stage,
where the TSEP is measured in a typical converter application. In this case, a current source,
Id, feeds the DUT to increase its temperature by means of power dissipations. Therefore,
the voltage drop across the device, under known electrical conditions, is measured as a
function of the temperature.

A simplified schematic of the circuits for the measurement of the voltage under low
current is depicted in Figure 7 for an IGBT (Figure 7a) and a MOSFET (Figure 7b). The
measurement can be carried out for both the on-state and off-state voltage. A voltmeter
is usually connected in parallel to the DUT for the measurement of the voltage drop.
It is worth noting that the current Ical must be at least hundreds of mA to guarantee a
linear relationship between the voltage drop and the temperature [80,81]. In the literature,
many works [80–96] have focused on voltage measurement under low current injection
in power diodes during forward polarization [84–87], in IGBT power modules [90–95], as
well as in power BJTs. Some works [94,95] have focused on the JT estimation in an IGBT
power module whose on-state voltage (i.e., collector-emitter voltage, VCEon) has a negative
temperature coefficient. The main drawback of this method is the high dependence on
the collector current during the measurement of VCE,on. Hence, the load current should be
diverted during the measurement and this momentary interruption limits the use of this
method in real-time applications.
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The principle of operation of the CM methods based on the on-state voltage measure-
ment at high current injection is almost similar to that of the low current injection methods.
The measurement of the VCE,on (or Vds,on) voltage drop across the device is used as a TSEP,
as described for the low current injection mode. The main difference with respect to the
previous CM method lies in the calibration procedure. More specifically, a higher current is
used for the calibration procedure and it produces a non-negligible self-heating. From this
perspective, the relation between the voltage drop on the DUT and the temperature also
depends on the value of the injected current.

The experimental setup for the temperature measurement is depicted in Figure 8.
A high current generator feeds the DUT with a pulsed current, IH, and a voltmeter is
connected in parallel to the DUT. It is important to point out that the measurement of the
JT can be obtained during the heating process.
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The TSEPs are usually the MOSFET on-state drain-source voltage [97], the power
diodes forward voltage [91], and the IGBT on-state emitter-collector voltage [91,97]. The
sensitivity of the aforementioned TSEP is strictly related to the on-state current value,
regardless of the specific device. The JT estimation is only practicable for current values
greater than tens of Ampere [98]. Hence, this method appears to be very useful, especially
for on-line JT measurement during the normal converter operation. Several circuit solutions
to measure the VCEon of the power device have been devised [81,90,96–99].

This approach also presents some limitations owing to the voltage swing between the
on-state and off-state of the device. This implies the use of advanced electronic sensing
circuits, thus increasing the complexity of the system. Innovative and compact sensing
circuits to face these issues have been proposed [97,98].

Another issue is the contact resistances of the voltage probes, which cause an undesired
voltage drop that may produce an overestimation of the JT measurement [99]. This issue
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has been partially mitigated with a correction factor based on the layout of the power
module [98,99]. Unfortunately, the introduced correction factor has to be calibrated as the
device aging progresses.

6.2.2. Saturation Current

The measurement of the saturation current, Isat, has also been used as a TSEP [88,93,100,101]
in power modules with IGBTs or MOSFETs. This current can be measured using a current
probe or a voltage probe (by adding a shunt resistor). The electrical quantities measured
provide a JT estimation due to the dependence on the chip temperature of the channel
electron mobility, µch; of the threshold, Vth; and of the PNP transistor current gain β for
the IGBT [101]. It is worth remembering that the current Isat shows a complex temperature
dependence, but under the assumption that all the devices are at the same temperature
and by neglecting the self-heating, the current Isat in a device can be simply approximated
as follows:

Isat =
1
2

µch(T)WchCox

Lch
(VGS − Vth(T))

2 (8)

The measurement setup consists of a voltage source, VGT, connected between the
gate-emitter (or gate-source) terminals of the DUT and a DC source voltage, VD, connected
between the drain-source or collector-emitter terminals of the DUT. Figure 9 shows the
setup of an IGBT device. The voltage value of VGT is usually higher than the threshold
voltage Vth of the device and a pulsed current is injected into the DUT by controlling
the switch T1. The saturation current can be measured through the voltage drop on the
Rshunt. The setup demonstrates that the thermal characterization of the device cannot be
performed during the on-line converter operation.
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The first procedure is the calibration step, where the DUT is usually placed in a
controlled hot plate that overheats the device and, hence, the Isat is measured at varying
plate temperatures. Then, the measurement procedure (see Figure 9) consists of performing
a non-destructive short-circuit to produce a significant channel temperature variation over
a short period of time. From this perspective, the measurement variation of the current Isat
can be associated with a specific temperature value. Moreover, the temperature calibration
may not be performed without power losses that influence the device self-heating [100–102].
Furthermore, it has been demonstrated that JT measurement is more accurate only for
high temperatures.

6.2.3. Gate Threshold Voltage

The threshold voltage Vth is defined as the voltage to be applied to the gate-source
terminals to have a given current, which is the minimum current that must flow into the
device channel to assume the device is turned on. Instead, from the standpoint of power
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electronic devices, Vth is defined as the level of gate bias needed to observe a transition
from weak inversion to strong inversion. For a MOS transistor structure, the Vth can be
approximated as follows [103]:

Vth ≈ 2ϕF(T)−
QSS
CO

+ ϕms(T) +

√
2εqNA

CO

√
2ϕF(T) (9)

where ϕF is the Fermi potential, QSS is the extrinsic change due to surface states, CO is the
gate oxide capacitance, ϕms is the metal-semiconductor work function difference, ε is the
oxide dielectric constant, q is the elementary charge unit, and NA is the body doping.

By referring to (9), it can be demonstrated that the voltage VTH decreases with the
increasing temperature [103], and it is a TSEP useful for temperature monitoring of MOS-
FETs [90,103] and IGBTs [93,94,104,105]. A potential measurement setup for the calibration
procedure and the measurement of the Vth as TSEP in the case of an IGBT device is depicted
in Figure 10.
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Figure 10. Circuit for the calibration step of the threshold voltage method.

The gate and drain (collector) terminals are short-circuited and a current source, Ical,
feeds the DUT, while a voltmeter measures the Vth. It is worth noting that the calibration
step is based on the low current injection method and, thereby, the self-heating is negligible.

Some works [93,94] have focused on the temperature dependence of the Vth measured
by varying the collector-emitter voltage and the current collector value for an IGBT device.
The Ical value has to be higher than 5 mA to have a correct calibration step for high
temperatures and high sensitivity [93,94]. Other works [104,105] have focused on the
temperature measurements after the power dissipation of the device. More specifically, a
current source with two different current levels, one for dissipation (high current injection)
and the other for JT measurement (low current injection), has been proposed. This CM
method is not suitable for on-line condition monitoring [106,107].

6.2.4. Gate-Source or Gate-Emitter Voltage Turn ON-OFF

The gate-emitter (source) voltage, Vge (or Vgs), is used as a TSEP during the turn-on
and turn-off of the switch [108,109]. The high sensitivity and the linear dependence of Vge
(or Vgs) with the temperature are the strengths of this method. Similarly to the threshold
voltage method, the Vge (or Vgs) TSEP method cannot be used for on-line JT estimation
in a power converter application, because the gate and collector (drain) terminal has to
be shorted. The experimental setup of the gate-source or gate-emitter voltage as the CM
method is very similar to that of the threshold voltage (see Figure 10). In this case, the
current injected into the DUT is higher than the current used in the threshold voltage
method and, consequentially, the self-heating is not negligible.

Figure 11 depicts the simulation of the gate-emitter voltage Vge of an IGBT during
the turn-off while varying the device temperature. It is worth noting that the following
analysis can be done by considering the turn-on of a device. The Miller plateau becomes
wider as the temperature increases. In other terms, the time shift ∆t in the figure is strictly
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related to the temperature of the chip and can be detected using a time counter that triggers
from the first falling edge to the second one after the Miller plateau.
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based on [110]).

The Miller plateau width td can be approximated as follows [109]:

td =
RGint(T)·Crss(T)·(VDD − VON)(

Iload(T)
gm(T) + Vth(T)

) (10)

where RGint is the internal gate resistance, Crss is the Miller capacitance, VDD is the DC-link
voltage, VON is the on-state voltage, Iload is the load current, and gm is the transconductance.
Equation (10) shows that td is directly proportional to Crss and RGint. It is worth noting
that the impact of temperature variation on VON and VDD is negligible, while the tempera-
ture variations of the terms (Iload/gm) and VTH partly neutralize each other. The internal
gate resistance depends on the temperature as the electron mobility decreases at higher
temperatures. Therefore, td increases at higher temperatures owing to the temperature
dependence of Crss and RGint. Therefore, the time interval td of the Miller plateau in the Vge
(or Vgs) voltage can be used as a TSEP to estimate the JT of IGBTs (or MOSFETs).

The authors in [109] have proved the temperature independence of the collector-
emitter voltage. Instead, the calibration step measurement has been improved in [53],
where an auxiliary sensing circuit has been added to the gate driver to reduce undesirable
oscillations during the turn off of the device. Meanwhile, in [110], the linear dependence of
td with respect to the temperature of the chip has been demonstrated, and a parametric
analysis by varying the JT, Iload, and DC-link voltage has been performed.

6.2.5. Turn On-Off Delay Time

The switching behavior of the power devices has been also adopted as a CM
method [110–116]. In this case, the TSEPs are the voltage and current waveforms during
the turn-on and turn-off of the DUT. This method is quite similar to the Vge (or Vgs) TSEP
method, but the JT monitoring can be performed on-line during the converter operations.
More specifically, the delay, ∆D, at turn-on, between the collector current ic and the gate-
emitter voltage Vge for an IGBT device (see Figure 11), is used as a TSEP [110–112], as well
as the delay between the drain current id and the gate-source voltage Vgs for a MOSFET
device. Bearing in mind the IGBT devices, the turn-on delay is of great interest because ∆D
increases linearly with the temperature [113], it only depends on the dc-link voltage, and it
is not influenced by the value of ic. More specifically, during the switching on time interval
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ton, the gate current charges the gate-emitter capacitance CGE that is connected in series
with the gate resistance RGint.

Therefore, the zero state waveform of the vge(t) can be written as follows [109]:

vge(t) = VG·
(

1 − e
t
τ

)
τ ≈ RGint (T)·CGE(T) tON ≈ τ(T)· ln

(
1 − Vth(T)

VG

)
(11)

where VG is the driver gate-emitter voltage.
The dependence on the temperature of the turn-on delay ∆D can be analyzed by

combining both (9) and (11). Vth decreases as the temperature increases and the value of
the time constant τ depends on the temperature variations too. It is worth underlining that
the gate charge (the intrinsic gate capacitances) has a weak dependence on temperature,
while the internal gate-resistance RGint has a stronger dependence on temperature owing
to the channel mobility µ, which decreases at higher temperatures.

Figure 12 depicts the simulation of an ideal IGBT device during the turn-on at varying
working operation temperatures (40 ◦C, 70 ◦C, and 100 ◦C). The shift on the right of the
waveforms is strictly related to the aforementioned temperature dependence. The previous
method is also valid for MOSFETs.

Electronics 2021, 10, x FOR PEER REVIEW 19 of 29 
 

 

 

Figure 12. Simplified ic–Vge turn ON waveforms of an IGBT at different temperature working oper-

ations. 

An advanced sensing circuit (voltage probes, Field Programmable Gate Array 

(FPGA), Analog to Digital Converter (ADC)) that records the transient evolutions of both 

Vge and ic waveforms has been proposed in [112]. The delay is calculated as the time inter-

val between the time instant the rising edge of the Vge is detected, and the rising edge of 

the current ic (Figure 12). This method allows a sensitivity close to 2 ns/°C. Moreover, be-

cause a gate resistor with a large resistance improves the accuracy of the temperature 

measurements during the switching behavior of the converter, but worsens the efficiency, 

a variable gate resistor has been proposed to set a higher value exclusively when the JT is 

measured [113]. 

Similarly, the turn-off delay can also be used as a TSEP, reaching a sensitivity level 

close to the one obtained with the turn-on delay method [114]. Other works have proposed 

an alternative sensing circuit for the JT estimation during the turn OFF [115]. However, 

the turn-off delay method does not attract interest because it is not linear at high-temper-

ature operations, and the time delay depends greatly on both the ic current and the DC 

link voltage [115,116]. 

In general, the turn-on and turn-off TSEPs methods require high bandwidth sensors 

and an advanced sampling circuit for temperature measurement, which considerably in-

crease the cost of the overall system. Furthermore, these methods usually require an ex-

ternal circuit to trigger a counter for the estimation of the turn-on and turn-off delay time. 

6.2.6. Current and Voltage Change Rate 

In the last decade, the research has moved from the study of the electrical quantities 

(such as the voltage and current waveforms) to their derivative functions, which are ob-

served during the device commutation, called dynamic thermo-sensitive electrical param-

eter (DTSEP) methods. More specifically, the collector-emitter voltage change rate (dvce/dt) 

and the collector current change rate (dic/dt) have been used as temperature estimators 

[117–121]. The temperature dependence of both dvce/dt and dic/dt has been explored theo-

retically as well as confirmed experimentally [119–121]. 

As an example, the dVce/dt in an IGBT device can be approximated as follows [121]: 

𝑑𝑣𝑐𝑒

𝑑𝑡
≈

1

𝜏𝑔𝑐(𝑇)
(

𝑉𝐺𝐸,𝑂𝑁 − 𝑉𝐺𝐸,𝑂𝐹𝐹

1 + (
𝐶𝑂

𝑔𝑚(𝑇)𝜏𝑔𝑐(𝑇)⁄ )
)  

𝜏𝑔𝑐 ≈ 𝑅𝐺𝑖𝑛𝑡 (𝑇) ∙ 𝐶𝐺𝐶(𝑇)    

(12) 
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An advanced sensing circuit (voltage probes, Field Programmable Gate Array (FPGA),
Analog to Digital Converter (ADC)) that records the transient evolutions of both Vge and ic
waveforms has been proposed in [112]. The delay is calculated as the time interval between
the time instant the rising edge of the Vge is detected, and the rising edge of the current ic
(Figure 12). This method allows a sensitivity close to 2 ns/◦C. Moreover, because a gate
resistor with a large resistance improves the accuracy of the temperature measurements
during the switching behavior of the converter, but worsens the efficiency, a variable gate
resistor has been proposed to set a higher value exclusively when the JT is measured [113].

Similarly, the turn-off delay can also be used as a TSEP, reaching a sensitivity level
close to the one obtained with the turn-on delay method [114]. Other works have proposed
an alternative sensing circuit for the JT estimation during the turn OFF [115]. However, the
turn-off delay method does not attract interest because it is not linear at high-temperature
operations, and the time delay depends greatly on both the ic current and the DC link
voltage [115,116].

In general, the turn-on and turn-off TSEPs methods require high bandwidth sensors
and an advanced sampling circuit for temperature measurement, which considerably
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increase the cost of the overall system. Furthermore, these methods usually require an
external circuit to trigger a counter for the estimation of the turn-on and turn-off delay time.

6.2.6. Current and Voltage Change Rate

In the last decade, the research has moved from the study of the electrical quan-
tities (such as the voltage and current waveforms) to their derivative functions, which
are observed during the device commutation, called dynamic thermo-sensitive electrical
parameter (DTSEP) methods. More specifically, the collector-emitter voltage change rate
(dvce/dt) and the collector current change rate (dic/dt) have been used as temperature
estimators [117–121]. The temperature dependence of both dvce/dt and dic/dt has been
explored theoretically as well as confirmed experimentally [119–121].

As an example, the dVce/dt in an IGBT device can be approximated as follows [121]:

dvce

dt
≈ 1

τgc(T)

VGE,ON − VGE,OFF

1 +
(

CO
gm(T)τgc(T)

)
 τgc ≈ RGint (T)·CGC(T) (12)

where CO is the charge extraction capacitance and VGE,ON and VGE,OFF are the on-off gate
driver voltages, respectively.

It is worth noting that the term dVce/dt depends on the physical parameters of the
IGBT device and the temperature dependence is not easy to obtain. More specifically,
the JT affects the dVce/dt through the MOS channel parameters such as the Lch, Wch,
emitter recombination parameter, channel mobility, and so on. A detailed discussion of
all the temperature parameter dependencies is given in [121]. The dependence of many
parameters influencing the derivative quantities on the temperature strongly limits the use
of this CM method for on-line JT measurement in practical power converter applications.
A wide investigation of the IGBT maximum dvce/dt for the JT estimation has revealed the
severe limits owing to the influence of the control method, the DC link voltage, and the
load current [121]. Likewise, the maximum dic/dt during turn-off as a TSEP has been also
investigated in [122]. Even in this case, the measurement of the current change rate has
been performed using an additional circuit able to capture the current and voltage transient
dynamics, which require both high bandwidth sensors and the use of voltage probes and
Rogowski coil probes. Furthermore, this sensing circuit should be designed to avoid any
disturbance, and it has to be insensitive to the temperature variation of the system.

In the recent generations of IGBT and SiC high power modules, the Kelvin emitter
pin has been introduced. Such an additional pin involves in the package an integrated
inherent parasitic inductance LeE between the Kelvin pin and power emitters pin [122–124],
as shown in Figure 13. The transient collector current characteristic during the turn OFF
process has been introduced as a potential DTSEP, called the maximum collector current
falling rate −dIC/dtmax [125]: the collector current IC flows in the inductance LeE and the
resulting voltage drop enables an easier investigation of the JT measurement.

Moreover, in [122], both the static and dynamic behaviors of the stored carriers in
the IGBT collector current during the falling rate have been analyzed. Furthermore, the
influences of the physical parameters of the device on the temperature sensitivity of
−dIC/dtmax have been fully investigated. However, several drawbacks of these methods
are related to the strong dependence of the applied voltage and the gate resistance, and the
thermal characterization can only be done off-line.
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6.2.7. Peak Gate Current

An innovative method for JT measurement in IGBTs and MOSFETs, based on the
temperature dependence of the internal gate resistance, has been studied in the last years.
Firstly, the measure of RGint in a power module has already been investigated using a
standard RLC meter [126], where a common approach is to consider the equivalent series
resistance (ESR) of both the gate-emitter and gate-collector capacitance (see Figure 14a).
Another method to estimate the RGint variation has been related to the measurement of the
gate charge during the turn-on of the DUT [127]. Therefore, the peak gate current during
the turn-on switching behavior has been assumed as a valid TSEP.
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JT measurement via the peak gate current can be studied during the standard charging
cycles of the gate terminal. Considering an IGBT device, the turn-on process starts when
the gate driver output voltage changes from a negative value to a positive one. Therefore,
the gate current can be computed as the step response of a second-order RLC circuit [128]
(see Figure 14a). The parasitic inductance LG can be neglected and the peak current can be
estimated by simply using the Ohm’s law, provided that the RLC circuit is overdamped. It is
worth noting that the external gate resistance RGext does not have a significant temperature
dependence. Therefore, the temperature variation of RGint can be carried out by the
measurement of the peak current variation. In other words, the maximum value of the gate
current provides a suitable strategy for the measurement of the chip JT. The measurement
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circuit is shown in Figure 14b. The peak voltage on the external gate resistor during turn-on
is measured with a peak detector circuit (a differential amplifier and a peak detector). Then,
the acquired data are processed by an analog to digital converter to the microcontroller.
This measurement circuit can be integrated into the gate driver, and the JT monitoring can
be operated during the on-line operation of the converter. This method does not require
calibration steps and, more importantly, the voltage peak has a linear relationship with
the temperature.

Only a few works have focused on the peak gate current as a TSEPs method. More
specifically, the sensing circuit depicted in Figure 14b has been proposed in [129–131],
where the JT has been esteemed in an IGBT power module. The authors have asserted
that the proposed method has better accuracy for JT measurement compared with other
TSEP methods in the literature. However, this method requires additional complex trigger
circuits for the measurement of JT, which may introduce additional disturbance into the
system. It is worth remembering that the aging of the power module may affect the internal
gate resistances. Hence, a correction factor should be introduced for calibration with the
aging of the device.

7. Comparison of the CM Methods

Table 2 summarizes all the CM methods discussed previously. A comparison between
the advantages and disadvantages of each approach is outlined.

Among the aforementioned optical CM methods, the use of fiber optic shows the
highest accuracy and sensitivity. On the other hand, the device package has to be removed
to carry out the temperature measurement. The optical methods based on the photodiode
sensors and the use of the IR camera are able to operate contactless, without the lift-off of
the device package. It is worth underlying that all the optical methods can be used during
the on-line converter operations.

The acoustic method has been studied as a CM method for power devices in recent
years. The strength of the proposed solution is owing to the ability to estimate the state of
aging a power module and prevent any mechanics fatigue. It is worth remembering that it
may be used during the on-line converter operations. In the literature, only a few papers
have been focused on this CM method. Thus, the technology is not yet well mature to be
widespread in commercial solutions.

It is worth highlighting that the physical and TTCs–NTC methods can be adopted
for on-line JT measurements in a real power converter application. Furthermore, both
CM methods show a strong linear dependence with the voltage and the temperature.
As a drawback, method is almost obsolete and requires a device package modification.
Meanwhile, the use of method needs a layout modification and it is strongly aging sensitive,
hence the measurement setup has to be frequently calibrated. Moreover, the method based
on the TTCs diode requires device layout modifications and shows poor linearity owing to
a nonlinear dependence between the voltage drop of the diode and the temperature.

Finally, TSEPs methods have been widely used as CM methods for the estimation of
the JT of the power devices, where the key point consists of correlating the temperature of
the semiconductor material with the electrical quantities during the switching operation of
the power device. More specifically, the TSEPs CM methods such as the on-state voltage
under high current injection, the gate turn–off voltage, the turn on-off delay time, and the
peak gate current enable the estimation of the JT during the on-line converter operations.
Furthermore, the aforementioned CM methods exhibit high linearity between the voltage
measurement and the temperature of the device.

On the other hand, the on-state voltage under high-level current injection, the gate
threshold voltage, the saturation current, the gate turn-off voltage, and the voltage-current
change rate require to switch off the power converter for the JT estimation. On the other
hand, the aforementioned CM methods highlight the highest accuracy among the various
TSEPs in the literature.
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Table 2. Summary of different CM methods.

Method Advantages Disadvantages

OPTICAL—Fiber optic [46–48] On-line measurements
High sensitivity and accuracy

Package modification
High cost

OPTICAL—Photodiode sensor—internal On-line measurements
Contactless

Technology not mature
Package modification

OPTICAL—Photodiode sensor—external [56–58] On-line measurements
Contactless Package modification

OPTICAL—IR camera [48–53] Spatial resolution
Contactless

Package modification
Poor response time

Poor accuracy

OPTICAL—IR camera print [49] Spatial resolution
Contactless

Poor response time
Poor accuracy

Acoustic [28–33] On-line measurements
Contactless

Technology not mature
Noise sensitive

Physical [59–65] On-line measurements
High linearity and sensitivity

Package modification
Poor response time

TTCs—NTC [67,69,70,72,75] On-line measurements
High linearity

Layout modification
Aging sensitive

TTCs—Diode [68,71] On-line measurements
High sensitivity

Layout modification
Poor linearity

TSEP—On-state voltage, low current [80–95] High sensitivity, linearity
Easy calibration

High-cost sensing
Off-line measurements

TSEP—Gate threshold voltage [89,93,94,103–105] High sensitivity and linearity Off-line measurements
Unplug DUT

TSEP—On-state voltage, high current [96–99] On-line measurements
High linearity

High-cost sensing
Aging sensitive

TSEP—Saturation current [87,93,100,101] High sensitivity Off-line measurements
Poor linearity

TSEP—Gate turn OFF voltage [108,109] High linearity Off-line measurements
High-cost sensing

TSEP—Turn on-off delay time [110–116] On-line measurements
High linearity

Aging sensitive
High-cost sensing

TSEP—Peak gate current [129,130] On-line measurements
High linearity

Aging sensitive
High-cost sensing

TSEP—Voltage-current change rate [117–121] High sensitivity and linearity Off-line measurements
Gate resistance dependence

8. Conclusions

In this work, the main CM methods used to estimate the SOH of the semiconductor
power devices were discussed and compared. The analysis has highlighted that the method
based on the TSEP on-state voltage, measured under low currents injection, is the best one
both for silicon and WBG power devices. Indeed, this CM method can involve a significant
reduction of the experimental time duration of the calibration steps in comparison with
other solutions. Furthermore, the experimental setup does not impact the device under
test, i.e., the measurement does not degrade the electrical connections, the metallization,
and the wire bonding. On the other hand, this method is not able to measure the junction
temperature during the on-line converter operations. From this perspective, the TSEP
methods based on the threshold voltage can be used during the on-line converter operations
with comparable sensitivity and accuracy of the junction temperature estimation.
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Finally, from the analysis of the literature arose the lack of studies of CM intrusiveness.
Many CM methods have been presented so far, but only in a few cases do they discuss
the intrusiveness of the proposed method, and very rarely do these works compare the
intrusiveness of the proposed CM method with others. CM methods requiring the removal
of the device package for temperature monitoring are intrusive for the device and this
intrusiveness could make these CM methods impracticable in dusty or moist environments
or in applications where atmospheric agents could damage the device. CM methods
that need to shut down the converter are very intrusive for the converter operations and
cannot be used in any application where the converter cannot shut down. Finally, a CM
method adopting tools for the measurement, conditioning, elaboration, and so on is more
of an encumbrance on the conversion system. This intrusiveness impedes their use in
applications requiring high power density or, more in general, where the weight and
encumbrance of the conversion system must be minimized. Therefore, accurate studies
focusing on the CM intrusiveness, which also provide some figure of merits based on the
previous aspects as well as the specific application, are strongly recommended.
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