Novel Practical Life Cycle Prediction Method by Entropy Estimation of Li-Ion Battery
Abstract
:1. Introduction
2. Suggestion of a Model for Predicting Battery Lifetime
2.1. The Charging-Discharging Characteristics of Li-Ion Batteries
2.2. The Mathematical Model for Suggested Life Cycle Prediction
3. Experiments and Discussion
3.1. Configuration of Test System
3.2. Characteristic Test of Li-Ion Batteries
3.3. Signal Processing Strategy
3.3.1. Point Detection Method (PDM)
3.3.2. Section Separation Method (SSM)
3.3.3. Algorithm
4. Results and Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
nonlinear battery voltage, V | Arrhenius rate constant for | ||
constant voltage, V | open circuit voltage, V | ||
internal resistance, | irreversible heat energy, , | ||
polarization constant, | reversible heat energy, , | ||
maximum battery capacity, Ah | heat energy of connect tab, | ||
battery current, A | anode tab resistance, | ||
low frequency filtered current, A | cathode tab resistance, | ||
exponential voltage, V | current battery capacity, Ah | ||
exponential zone time constant, | maximum cycle period at | ||
nominal ambient temperature, K | maximum irreversible energy for 1 cycle | ||
cell internal temperature, K | current irreversible energy for 1 cycle | ||
ambient temperature, K | actual cycle time | ||
Arrhenius rate constant for | predicted cycle time |
References
- Barre, A.; Deguilhem, B.; Grolleau, S.; Gerard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Doh, C.-H.; Ha, Y.-C.; Eom, S.-W. Entropy measurement of a large format lithium ion battery and its application to calculate heat generation. Electrochim. Acta 2019, 309, 382–391. [Google Scholar] [CrossRef]
- Schlueter, S.; Genieser, R.; Richards, D.; Hoster, H.E.E.; Mercer, M.P. Quantifying structure dependent responses in Li-ion cells with excess Li spinel cathodes: Matching voltage and entropy profiles through mean field models. Phys. Chem. Chem. Phys. 2018, 20, 21417–21429. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, V.V.; Choi, D.; Wang, D.; Xu, W.; Towne, S.; Williford, R.E.; Zhang, J.-G.; Liu, J.; Yang, Z. Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J. Power Sources 2010, 195, 3720–3729. [Google Scholar] [CrossRef]
- Zabala, E.S.; Laserna, E.M.; Berecibar, M.; Gandiaga, I.; Martinez, L.M.R.; Villarreal, I. Realistic lifetime prediction approach for Li-ion batteries. Appl. Energy 2016, 162, 839–852. [Google Scholar] [CrossRef]
- Osara, J.A.; Bryant, M.D. A Thermodynamic Model for Lithium-Ion Battery Degradation: Application of the Degradation-Entropy Generation Theorem. Inventions 2019, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Rahn, C.D.; Wang, C.-Y. Battery Systems Engineering, 1st ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Cordoba-Arenas, A.; Onori, S.; Guezennec, Y.; Rizzoni, G. Capacity and power fade cycle-life model for plug-in hybrid electric vehicle lithium-ion battery cells containing blended spinel and layered-oxide positive electrodes. J. Power Sources 2015, 278, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Majeau-Bettez, G.; Hawkins, T.R.; Strømman, A.H. Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles. Environ. Sci. Technol. 2011, 45, 4548–4554. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.H.; Gang, J.H.; An, D.; Kim, S.I.; Kim, J.Y.; Choi, J.H. Remaining Useful Life Prediction of Li-Ion Battery Based on Charge Voltage Characteristics. Trans. Korean Soc. Mech. Eng. B 2013, 37, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Jiang, J.; Zhang, C.; Zhang, W.; Ma, Z.; Jiang, Y. Lithium-ion battery aging mechanisms and life model under different charging stresses. J. Power Sources 2017, 356, 103–114. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.-Y.; Tang, X. Cycling degradation of an automotive LiFePO4 lithium-ion battery. J. Power Sources 2011, 196, 1513–1520. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.; Liaw, B.Y.; Metzler, V.; Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 2014, 254, 168–182. [Google Scholar] [CrossRef]
- Legrand, N.; Knosp, B.; Desprez, P.; Lapicque, F.; Rael, S. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling. J. Power Sources 2014, 245, 208–216. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Luo, Y.-F. Search for an Optimal Rapid-Charging Pattern for Li-Ion Batteries Using the Taguchi Approach. IEEE Trans. Ind. Electron. 2010, 57, 3963–3971. [Google Scholar] [CrossRef]
- Dai, Q.; Kelly, J.C.; Gaines, L.; Wang, M. Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries 2019, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Strømman, A.H. Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. J. Ind. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Bauer, C.; Hofer, J.; Althaus, H.-J.; Del Duce, A.; Simons, A. The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Appl. Energy 2015, 157, 871–883. [Google Scholar] [CrossRef]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2016, 164, A5019–A5025. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.F.; Weil, M. Providing a common base for life cycle assessments of Li-Ion batteries. J. Clean. Prod. 2018, 171, 704–713. [Google Scholar] [CrossRef]
- Zhu, C.; Li, X.; Song, L.; Xiang, L. Development of a theoretically based thermal model for lithium ion battery pack. J. Power Sources 2013, 223, 155–164. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Standard discharge capacity, mAh | min 4900 | Cycle life capacity at 500 cycles, mAh | |
Rated discharge capacity, mAh | min 4753 | Initial internal impedance, | 28.0 |
Charge voltage, V | 4.5 | Calculated internal impedance, | 40.0 |
Nominal voltage, V | 3.63 | Cell weight, g | 69.0 |
Max. charge current, mA | 4900 | Cell length, mm | 70.6 |
Max. cont. discharge current, mA | 9800 | Cell diameter, mm | 21.1 |
Discharge cut-off, V | 2.5 | Charge method | CC-CV 1 |
DOD 1 [%] | No Section [%] | 3 Section Separation [%] |
---|---|---|
0–100 | <70 | >89 |
10–90 | >88 | >92 |
20–80 | >92 | >94 |
Charging Current [C] | Discharging Current [C] | DOD [%] | Actual Cycle | Predicted Cycle | Accuracy Rate [%] |
---|---|---|---|---|---|
0.5 | 1 | 100 [0–100] | 554.5 | 510 | 92.0 |
0.5 | 1 | 80 [10–90] | 704.0 | 650 | 92.4 |
0.5 | 1 | 70 [20–90] | 841.3 | 778 | 92.5 |
0.5 | 1 | 60 [20–80] | 983.1 | 918 | 93.4 |
0.5 | 1 | 50 [30–80] | 1238.8 | 1172 | 94.6 |
0.25 | 1 | 100 [0–100] | 583.1 | 538 | 92.2 |
0.25 | 1 | 80 [10–90] | 736.5 | 685 | 93.0 |
0.25 | 1 | 70 [20–90] | 879.3 | 815 | 92.7 |
0.25 | 1 | 60 [20–80] | 1024.4 | 954 | 93.1 |
0.25 | 1 | 50 [30–80] | 1290.8 | 1218 | 94.4 |
0.1 | 1 | 100 [0–100] | 633.3 | 585 | 92.3 |
0.1 | 1 | 80 [10–90] | 795.3 | 740 | 93.1 |
0.1 | 1 | 70 [20–90] | 950.7 | 890 | 93.6 |
0.1 | 1 | 60 [20–80] | 1099.3 | 1031 | 93.8 |
0.1 | 1 | 50 [30–80] | 1374.4 | 1299 | 94.5 |
0.5 | 2 | 100 [0–100] | 381.0 | 350 | 91.8 |
0.5 | 2 | 80 [10–90] | 476.4 | 443 | 92.9 |
0.5 | 2 | 70 [20–90] | 568.6 | 532 | 93.5 |
0.5 | 2 | 60 [20–80] | 663.6 | 622 | 93.8 |
0.5 | 2 | 50 [30–80] | 837.4 | 787 | 94.0 |
0.5 | 0.5 | 100 [0–100] | 822.7 | 765 | 93.0 |
0.5 | 0.5 | 80 [10–90] | 1045.2 | 979 | 93.7 |
0.5 | 0.5 | 70 [20–90] | 1251.6 | 1175 | 93.9 |
0.5 | 0.5 | 60 [20–80] | 1459.6 | 1376 | 94.3 |
0.5 | 0.5 | 50 [30–80] | 1843.9 | 1744 | 94.6 |
0.5 | 0.1 | 100 [0–100] | 2078.5 | 1933 | 93.0 |
0.5 | 0.1 | 80 [10–90] | 2612.8 | 2453 | 93.9 |
0.5 | 0.1 | 70 [20–90] | 3120.3 | 2936 | 94.1 |
0.5 | 0.1 | 60 [20–80] | 3607.9 | 3406 | 94.4 |
0.5 | 0.1 | 50 [30–80] | 4553.7 | 4308 | 94.6 |
1 | 2 | 100 [0–100] | 366.8 | 336 | 91.6 |
1 | 2 | 80 [10–90] | 452.3 | 418 | 92.4 |
1 | 2 | 70 [20–90] | 548.7 | 510 | 92.9 |
1 | 2 | 60 [20–80] | 640.9 | 597 | 93.1 |
1 | 2 | 50 [30–80] | 810.4 | 756 | 93.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-K.; Moon, S.-C. Novel Practical Life Cycle Prediction Method by Entropy Estimation of Li-Ion Battery. Electronics 2021, 10, 487. https://doi.org/10.3390/electronics10040487
Kim T-K, Moon S-C. Novel Practical Life Cycle Prediction Method by Entropy Estimation of Li-Ion Battery. Electronics. 2021; 10(4):487. https://doi.org/10.3390/electronics10040487
Chicago/Turabian StyleKim, Tae-Kue, and Sung-Chun Moon. 2021. "Novel Practical Life Cycle Prediction Method by Entropy Estimation of Li-Ion Battery" Electronics 10, no. 4: 487. https://doi.org/10.3390/electronics10040487
APA StyleKim, T.-K., & Moon, S.-C. (2021). Novel Practical Life Cycle Prediction Method by Entropy Estimation of Li-Ion Battery. Electronics, 10(4), 487. https://doi.org/10.3390/electronics10040487