Comparison of Sneo-Based Neural Spike Detection Algorithms for Implantable Multi-Transistor Array Biosensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Figures of Merit
2.2. Extracellular Recordings Datasets
2.3. SNEO Algorithm
2.4. Thresholding
2.5. Proposed Approaches
2.6. Noise Estimation Techniques
2.6.1. Median
2.6.2. Mean Absolute
2.6.3. Winsorization
- An initial noise standard deviation σ′ is required for the clipping (we used AA for this initial estimate).
- σ′ is then used for the clipping of the absolute value of the signal as follows:
- from the clipped signal x′(n), the standard deviation is finally estimated as:
3. Results
3.1. Performance Results
3.2. Resource Consumption
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berényi, A.; Somogyvári, Z.; Nagy, A.J.; Roux, L.; Long, J.D.; Fujisawa, S.; Stark, E.; Leonardo, A.; Harris, T.D.; Buzsáki, G. Large-Scale, High-Density (up to 512 Channels) Recording of Local Circuits in Behaving Animals. J. Neurophysiol. 2014, 111, 1132–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; Cai, Y.; Fang, L.; Liang, X.; Ye, X.; Liang, B. A Lithops-Like Pt Nanorods Modified Microelectrode Array for Cellular ATP Release Detection. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–3. [Google Scholar]
- Tambaro, M.; Vallicelli, E.A.; Saggese, G.; Strollo, A.; Baschirotto, A.; Vassanelli, S. Evaluation of In Vivo Spike Detection Algorithms for Implantable MTA Brain—Silicon Interfaces. J. Low Power Electron. Appl. 2020, 10, 26. [Google Scholar] [CrossRef]
- Vallicelli, E.A.; Fary, F.; Baschirotto, A.; de Matteis, M.; Reato, M.; Maschietto, M.; Rocchi, F.; Vassanelli, S.; Guarrera, D.; Collazuol, G.; et al. Real-Time Digital Implementation of a Principal Component Analysis Algorithm for Neurons Spike Detection. In Proceedings of the 2018 International Conference on IC Design & Technology (ICICDT), Otranto, Italy, 4–6 June 2018; pp. 33–36. [Google Scholar]
- Vallicelli, E.A.; De Matteis, M.; Baschirotto, A.; Rescati, M.; Reato, M.; Maschietto, M.; Vassanelli, S.; Guarrera, D.; Collazuol, G.; Zeiter, R. Neural Spikes Digital Detector/Sorting on FPGA. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy, 19–21 October 2017; pp. 1–4. [Google Scholar]
- Tambaro, M.; Vallicelli, E.A.; Tomasella, D.; Baschirotto, A.; Vassanelli, S.; Maschietto, M.; De Matteis, M. Real-Time Neural (RT-Neu) Spikes Imaging by a 9375 Sample/(Sec Pixel) 32×32 Pixels Electrolyte-Oxide-Semiconductor Biosensor. In Proceedings of the 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Lausanne, Switzerland, 15–18 July 2019; pp. 233–236. [Google Scholar]
- Miccoli, B.; Lopez, C.M.; Goikoetxea, E.; Putzeys, J.; Sekeri, M.; Krylychkina, O.; Chang, S.-W.; Firrincieli, A.; Andrei, A.; Reumers, V.; et al. High-Density Electrical Recording and Impedance Imaging With a Multi-Modal CMOS Multi-Electrode Array Chip. Front. Neurosci. 2019, 13, 641. [Google Scholar] [CrossRef] [PubMed]
- Obeid, I.; Wolf, P.D. Evaluation of Spike-Detection Algorithms for a Brain-Machine Interface Application. IEEE Trans. Biomed. Eng. 2004, 51, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Do, A.T.; Yeo, K.S. A Hybrid NEO-Based Spike Detection Algorithm for Implantable Brain-IC Interface Applications. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne VIC, Australia, 1–5 June 2014; pp. 2393–2396. [Google Scholar]
- Thies, J.; Alimohammad, A. Compact and Low-Power Neural Spike Compression Using Undercomplete Autoencoders. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Tariq, T.; Satti, M.H.; Saeed, M.; Kamboh, A.M. Low SNR Neural Spike Detection Using Scaled Energy Operators for Implantable Brain Circuits. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 1074–1077. [Google Scholar]
- Eisen, E.S.; Toreyin, H. A Preliminary Analysis on Impact of Additive Flicker Noise on Detection Sensitivity of Neural Spikes. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 5164–5167. [Google Scholar]
- Mirzaei, S.; Hosseini-Nejad, H.; Sodagar, A.M. Spike Detection Technique Based on Spike Augmentation with Low Computational and Hardware Complexity. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 894–897. [Google Scholar]
- Huang, L.; Ling, B.W.-K.; Cai, R.; Zeng, Y.; He, J.; Chen, Y. WMsorting: Wavelet Packets’ Decomposition and Mutual Information-Based Spike Sorting Method. IEEE Trans. Nanobiosci. 2019, 18, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, L.; Nagy, Z.; Kineses, Z.; Fiath, R. FPGA-Based Neural Probe Positioning to Improve Spike Sorting with OSort Algorithm. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar]
- Barzan, H.; Ichim, A.-M.; Muresan, R.C. Machine Learning-Assisted Detection of Action Potentials in Extracellular Multi-Unit Recordings. In Proceedings of the 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 21–23 May 2020; pp. 1–5. [Google Scholar]
- Shaikh, S.; So, R.; Libedinsky, C.; Basu, A. Experimental Comparison of Hardware-Amenable Spike Detection Algorithms for IBMIs. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 754–757. [Google Scholar]
- Sablok, S.; Gururaj, G.; Shaikh, N.; Shiksha, I.; Choudhary, A.R. Interictal Spike Detection in EEG Using Time Series Classification. In Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020; pp. 644–647. [Google Scholar]
- Abd El-Samie, F.E.; Alotaiby, T.N.; Khalid, M.I.; Alshebeili, S.A.; Aldosari, S.A. A Review of EEG and MEG Epileptic Spike Detection Algorithms. IEEE Access 2018, 6, 60673–60688. [Google Scholar] [CrossRef]
- Brychta, R.J.; Shiavi, R.; Robertson, D.; Diedrich, A. Spike Detection in Human Muscle Sympathetic Nerve Activity Using the Kurtosis of Stationary Wavelet Transform Coefficients. J. Neurosci. Methods 2007, 160, 359–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beche, J.-F.; Bonnet, S.; Levi, T.; Escola, R.; Noca, A.; Charvet, G.; Guillemaud, R. Real-Time Adaptive Discrimination Threshold Estimation for Embedded Neural Signals Detection. In Proceedings of the 2009 4th International IEEE/EMBS Conference on Neural Engineering, Antalya, Turkey, 29 April–2 May 2009; pp. 597–600. [Google Scholar]
- Pregowska, A.; Kaplan, E.; Szczepanski, J. How Far Can Neural Correlations Reduce Uncertainty? Comparison of Information Transmission Rates for Markov and Bernoulli Processes. Int. J. Neur. Syst. 2019, 29, 1950003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pregowska, A.; Casti, A.; Kaplan, E.; Wajnryb, E.; Szczepanski, J. Information Processing in the LGN: A Comparison of Neural Codes and Cell Types. Biol. Cybern. 2019, 113, 453–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camuñas-Mesa, L.A.; Quiroga, R.Q. A Detailed and Fast Model of Extracellular Recordings. Neural Comput. 2013, 25, 1191–1212. [Google Scholar] [CrossRef] [PubMed]
- Gibson, S.; Judy, J.W.; Markovic, D. Technology-Aware Algorithm Design for Neural Spike Detection, Feature Extraction, and Dimensionality Reduction. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Mondragón-González, S.L.; Burguière, E. Bio-Inspired Benchmark Generator for Extracellular Multi-Unit Recordings. Sci. Rep. 2017, 7, 43253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, A.K.; Ang, K.K.; Guan, C. Automatic Selection of Neuronal Spike Detection Threshold via Smoothed Teager Energy Histogram. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 1437–1440. [Google Scholar]
- Yang, Y.; Mason, A.J. Hardware Efficient Automatic Thresholding for NEO-Based Neural Spike Detection. IEEE Trans. Biomed. Eng. 2017, 64, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Do, A.T.; Zeinolabedin, S.M.A.; Jeon, D.; Sylvester, D.; Kim, T.T.-H. An Area-Efficient 128-Channel Spike Sorting Processor for Real-Time Neural Recording With 0.175 μW/Channel in 65-Nm CMOS. IEEE Trans. VLSI Syst. 2019, 27, 126–137. [Google Scholar] [CrossRef]
- Osipov, D.; Paul, S.; Stemmann, H.; Kreiter, A.K. Energy-Efficient Architecture for Neural Spikes Acquisition. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4. [Google Scholar]
- Schaffer, L.; Pletl, S.; Kincses, Z. Spike Detection Using Cross-Correlation Based Method. In Proceedings of the 2019 IEEE 23rd International Conference on Intelligent Engineering Systems (INES), Gödöllő, Hungary, 25–27 April 2019; pp. 000175–000178. [Google Scholar]
- Choi, J.H.; Jung, H.K.; Kim, T. A New Action Potential Detector Using the MTEO and Its Effects on Spike Sorting Systems at Low Signal-to-Noise Ratios. IEEE Trans. Biomed. Eng. 2006, 53, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Gibson, S.; Judy, J.W.; Markovic, D. Comparison of Spike-Sorting Algorithms for Future Hardware Implementation. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 5015–5020. [Google Scholar]
- Quiroga, R.Q.; Nadasdy, Z.; Ben-Shaul, Y. Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering. Neural Comput. 2004, 16, 1661–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizk, M.; Wolf, P.D. Optimizing the Automatic Selection of Spike Detection Thresholds Using a Multiple of the Noise Level. Med. Biol. Eng. Comput. 2009, 47, 955–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor, D.; Socheleau, F.-X. Robust Estimation of Noise Standard Deviation in Presence of Signals With Unknown Distributions and Occurrences. IEEE Trans. Signal Process. 2012, 60, 1545–1555. [Google Scholar] [CrossRef]
- Sánchez-Monge, Á.; Schilke, P.; Ginsburg, A.; Cesaroni, R.; Schmiedeke, A. STATCONT: A Statistical Continuum Level Determination Method for Line-Rich Sources. Astron. Astrophys. 2018, 609, A101. [Google Scholar] [CrossRef] [Green Version]
- Tai, M.-Y.; Tu, W.-C.; Chien, S.-Y. VLSI Architecture Design of Layer-Based Bilateral and Median Filtering for 4k2k Videos at 30 fps. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar]
10 Hz | 50 Hz | 100 Hz | 200 Hz | |
---|---|---|---|---|
TPR (%) | 61.02 | 43.25 | 30.31 | 22.65 |
FAR (%) | 1.14 | 0.00 | 0.00 | 0.00 |
Accuracy (%) | 60.01 | 43.24 | 30.30 | 22.64 |
MAD | ||||
10 Hz | 50 Hz | 100 Hz | 200 Hz | |
TPR (%) | 62.38 | 62.05 | 60.28 | 59.58 |
FAR (%) | 1.33 | 0.24 | 0.1 | 0.08 |
Accuracy (%) | 61.74 | 61.94 | 60.24 | 59.49 |
AA | ||||
10 Hz | 50 Hz | 100 Hz | 200 Hz | |
TPR (%) | 62.63 | 62.09 | 59.81 | 58.98 |
FAR (%) | 1.78 | 0.28 | 0.11 | 0.08 |
Accuracy (%) | 61.91 | 61.85 | 59.77 | 58.95 |
WA | ||||
10 Hz | 50 Hz | 100 Hz | 200 Hz | |
TPR (%) | 63.63 | 63.15 | 62.48 | 60.64 |
FAR (%) | 1.02 | 0.31 | 0.12 | 0.08 |
Accuracy (%) | 62.76 | 62.81 | 62.24 | 60.61 |
MAD | ||||
10 Hz | 50 Hz | 100 Hz | 200 Hz | |
TPR (%) | 60.82 | 55.21 | 49.10 | 45.15 |
FAR (%) | 1.5 | 0.12 | 0.01 | 0.00 |
Accuracy (%) | 60.25 | 55.17 | 49.10 | 45.14 |
AA | ||||
10 Hz | 50 Hz | 100 Hz | 200 Hz | |
TPR (%) | 61.38 | 50.86 | 40.72 | 34.74 |
FAR (%) | 1.44 | 0.01 | 0.00 | 0.00 |
Accuracy (%) | 60.04 | 50.86 | 40.71 | 34.74 |
WA | ||||
10 Hz | 50 Hz | 100 Hz | 200 Hz | |
TPR (%) | 61.19 | 55.40 | 48.71 | 45.00 |
FAR (%) | 1.49 | 0.09 | 0.02 | 0.00 |
Accuracy (%) | 60.09 | 55.32 | 48.70 | 45.09 |
Filter | Mean | SNEO *2 | |
---|---|---|---|
Adder | 8 | 6 | 4k + 1 |
Multiplicator | 9 | 1 | 4k + 3 |
Divisor | 0 | 0 *1 | 0 |
Register | 19 | 8 | 10k + 3 |
Weighted Total | 211N + 54N2 | 102N + 6N2 | (186k + 46) N+ (96k + 36) N2 |
AA | WA | |
---|---|---|
Adder | 2 + 1 *1 | 4 + 2 *1 |
Multiplicator | 1 | 2 |
Comparator | 0 | 1 |
Divisor | 0 | 0 |
Register | 3 + 1 *1 | 6 + 2 *1 |
Other operations | (1 + 1) *2 | (2 + 3) *2 |
Weighted Total | 69N + 6N2 | 148N + 12N2 |
Standard SNEO | Pre-Norm | Post-Norm | |
---|---|---|---|
Adder | 1 + 1 *1 | 0 | 0 |
Multiplicator | 1 *1 | 0 | 2 *1 |
Comparator | 1 *1 | 1 | 1 *1 |
Divisor | 0 | 7 | 0 |
Register | 11 | 8 | 2 |
STD | 0 | AA or WA | AA or WA |
Weighted Total | 151N + 24N2 | 140N2 + 205N + STD | 32N + 48N2 + STD |
Standard SNEO | Pre-Norm MAD | Pre-Norm WA | Pre-Norm AA | Post-Norm MAD | Post-Norm WA | Post-Norm AA | |
---|---|---|---|---|---|---|---|
#Logic Gates | 42288 | - | 52096 | 51080 | - | 44824 | 43808 |
TPR | 39.22% | 61.07% | 62.18% | 60.88% | 52.57% | 52.46% | 46.78% |
FAR | 0.27% | 0.51% | 0.57% | 0.56% | 0.42% | 0.40% | 0.36% |
Accuracy | 39.12% | 60.87% | 61.80% | 60.66% | 52.42% | 52.32% | 46.65% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saggese, G.; Tambaro, M.; Vallicelli, E.A.; Strollo, A.G.M.; Vassanelli, S.; Baschirotto, A.; Matteis, M.D. Comparison of Sneo-Based Neural Spike Detection Algorithms for Implantable Multi-Transistor Array Biosensors. Electronics 2021, 10, 410. https://doi.org/10.3390/electronics10040410
Saggese G, Tambaro M, Vallicelli EA, Strollo AGM, Vassanelli S, Baschirotto A, Matteis MD. Comparison of Sneo-Based Neural Spike Detection Algorithms for Implantable Multi-Transistor Array Biosensors. Electronics. 2021; 10(4):410. https://doi.org/10.3390/electronics10040410
Chicago/Turabian StyleSaggese, Gerardo, Mattia Tambaro, Elia A. Vallicelli, Antonio G. M. Strollo, Stefano Vassanelli, Andrea Baschirotto, and Marcello De Matteis. 2021. "Comparison of Sneo-Based Neural Spike Detection Algorithms for Implantable Multi-Transistor Array Biosensors" Electronics 10, no. 4: 410. https://doi.org/10.3390/electronics10040410